پیشبینی اپی توپهای سلولهایB و Tآنتیژن Omp25 از باکتری بروسلا ملی تنسیس به منظور طراحی واکسن نوترکیب گوسفندی
Subject Areas : Camelس. یوسفی 1 , م. طهمورثپور 2 , م.ه. سخاوتی 3
1 - Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
2 - Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
3 - Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
Keywords: بروسلا, پیش بینی اپی توپ, Omp25,
Abstract :
بروسلوز یکی از رایج ترین بیماریهای دامی است که توسط باکتری گرم منفی بروسلا ایجاد میشود. با توجه به ضررهای جدی اقتصادی و درمانی این بیماری که برای دام و انسان همواره به ارمغان دارد تلاشهای بسیاری جهت جلوگیری و درمان این بیماری توسط واکسنهای نوترکیب بر پایه آنتیژنهای غشای پروتئینی خارجی صورت میگیرد. بدین منظور هدف از مطالعه حاضر بررسی خصوصیات بیوانفورماتیکی آنتی ژن Omp25 به عنوان یکی از آنتیژنهای غالب غشای پروتئینی باکتری بروسلا بوده است. در این پژوهش از نرم افزارهای بیوانفورماتیکی مختلفی برای پیشبینی اپی توپهای B وT، ساختار دوم و سوم پروتئین، خصوصیات ایمنیزایی و ویژگیهای هضم پروتئین استفاده گردید. پیش از استفاده از نرم افزارها میزان دقت آنها توسط دادههای تجربی اعتبار سنجی گردید. نتایج آنالیز بیوانفورماتیکی نشان داد که پنج اپی توپ برای سلولهای B در موقعیتهای 44-26، 79-59، 112-88، 166-146، 202-175 و پنج اپی توپ برای سلولهای T در مکانهای 10-1، 22-14، 132-122، 162-154 و 213-206 وجود دارد. تمامی اپی توپهای شناسایی شده به جز اپی توپهای 10-1 و 22-14 دارای توانایی ایمنیزایی بودند. نهایتاً اپی توپ ناحیه 162-154 به عنوان یک اپی توپ مشترک بین سلولهای B و T جهت طراحی واکسن نوترکیب پیشبینی گردید.
Almeida R.R., Rosa D.S. and Ribeiro S.P. (2012). Broad and cross-clade CD4 (+) T-cell responses elicited by a DNA vaccine encoding highly conserved and promiscuous HIV-1 M - group consensus peptides. PloS One. 7, 45267.
Berzofsky J.A. (1985). Intrinsic and extrinsic factors in protein antigenic structure. Science. 229(4717), 932-940.
Bryson C.J., Jones T.D. and Baker M.P. (2010). Prediction of immunogenicity of therapeutic proteins: validity of computational tools. BioDrugs. 24, 1-8.
Bui H.H., Peters B. and Assarsson E. (2007). B and T cell epitopes of influenza A virus, knowledge and opportunities. Proc. Natl. Acad. Sci. USA. 104(1), 246-251.
Buus S., Lauemøller S.L. and Worning P. (2003). Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach. Tissue. Antigens. 62(5), 378-384.
Cassataro J., Estein S.M. and Pasquevich KA. (2005). Vaccination with the recombinant Brucella outer membrane protein 31 or a derived 27-amino-acid synthetic peptide elicits a CD4+ T helper 1 response that protects against Brucella melitensis infection. Infect. Immunol. 73, 8079-8088.
Chen P., Rayner S. and Hu K.H. (2011). Advances of bioinformatics tools applied in virus epitopes prediction. Virologica. Sin. 26(1), 1-7.
Cloeckaert A., Verger J.M., Grayon M., Zygmunt M.S. and Grépinet O. (1996). Nucleotide sequence and expression of the gene encoding the major 25-kilodalton outer membrane protein of Brucella ovis: evidence for antigenic shift, compared with other Brucella species, due to a deletion in the gene. Infect. Immunol. 64(6), 2047-2055.
Cloeckaert A., Vizcaíno N., Paquet J.Y., Bowden R.A. and Elzer P.H. (2002). Major outer membrane proteins of Brucella species: past, present and future. Vet. Microbiol. 90, 229-247.
Commander N.J., Spencer S.A., Wren B.W. and MacMillan A.P. (2007). The identification of two protective DNA vaccines from a panel of five plasmid constructs encoding Brucella melitensis 16M genes. Vaccine. 25, 43-54.
Corbel M.J. and Brinley-Morgan W.J. (1984). Genus brucella Meyer and Shaw. Pp. 377-388 in Bergey's Manual of Systemic Bacteriology. N.R. Krieg, Ed. The Williams & Wilkins Co., Baltimore, MD.
Cutler S.J., Whatmore A.M. and Commande N.J. (2005). Brucellosis-new aspects of an old disease. J. Appl. Microbiol. 98, 1270-1281.
Devasundaram S., Deenadayalan A. and Raja A. (2014). In silico analysis of potential human T cell antigens from mycobacterium tuberculosis for the development of subunit vaccines against tuberculosis. Immunol. Invest. 43(2), 137-159.
Donnes P. and Elofsson A. (2002). Prediction of MHC classⅠbinding peptides, using SVMHC. BMC Bioinform. 3, 25-31.
Dudek N.L., Perlmutter P., Aguilar M.I., Croft N.P. and Purcell A.W. (2010). Epitope discovery and their use in peptide based vaccines. Curr. Pharm. Des. 16, 3149-3157.
Ghasemi A., Ranjbar R. and Amani J. (2014). In silico analysis of chimeric TF, Omp31 and BP26 fragments of Brucella melitensis for development of a multi subunit vaccine candidate. Iranian J. Basic. Med. Sci. 17, 172-180.
Geourjon C. and Deléage G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 11, 681-684.
Goel D. and Bhatnagar R. (2012). Intradermal immunization with outer membrane protein 25 protects Balb/c mice from virulent B. abortus 544. Mol. Immunol. 51, 159-168.
Hopp T.P., Woods K.R. (1981). Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. USA. 78(61), 3824-3828.
Karplus P.A. and Schulz G.E. (1985). Prediction of chain flexibil
ity in proteins. Naturwissenschaften. 72, 212-213.
Karthik K., Rathore R., Verma A.K., Tiwari R. and Dhama K. (2013). Brucellosis – still it stings? Livest. Technol. 2(10), 8-10.
Kyte J. and Doolittle R.F. (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1), 105-132.
Li Y., Liu X. and Zhu Y. (2013). Bioinformatic prediction of epitopes in the Emy162 antigen of Echinococcus multilocularis. Exp. Ther. Med. 6, 335-340.
Noguchi H., Kato R., Hanai T., Matsubara Y., Honda H., Brusic V. and Kobayashi T. (2002). Hidden Markov modelbased prediction of antigenic peptides that interact with MHC class II molecules. J. Biosci. Bioeng. 94(3), 264-270.
Pappas G., Papadimitriou P., Christou L. and Akritidis N. (2006). Future trends in human brucellosis treatment. Exp. Opin. Invest. Drugs. 15, 1141-1149.
Ponomarenko J.V. and van Regenmortel M.V.H. (2009). B-cell Epitope Prediction. Structural Bioinformatics, Bourne.
Pavlovi M.D., Jandrli D.R. and Miti N.S. (2014). Epitope distribution in ordered and disordered protein regions. Part B-Ordered regions and disordered binding sites are targets of T- and B-cell immunity. J. Immunol. Methods. 407, 90-107.
Sekhavati M.H., Majidzadeh Heravi R., Tahmoorespur M., Yousefi S., Abbassi-Daloii T. and Akbari R. (2015). Cloning, molecular analysis and epitopics prediction of a new chaperone GroEL Brucella melitensis antigen. Iranian J. Basic. Med. Sci. 18, 499-505.
Shen Z.G., Yan P. and He W. (2010). Prediction of the secondary structure and the B cell epitope of the extracellular domain of FSHR. J. Chongqing Med. Univ. 35, 1317-1320.
Simon G.G., Hu Y. and Khan A.M. (2010). Dendritic cell mediated delivery of plasmid DNA encoding LAMP / HIV-1 Gag fusion immunogen enhances T cell epitope responses in HLA DR4 transgenic mice. PLoS One. 5(1), 8574.
Steere A.C., Drouin E.E. and Glickstein L.J. (2011). Relationship between immunity to Borrelia burgdorferi outer-surface protein A (OspA) and Lyme arthritis. Clin. Infect. Dis. 52(3), 259-265.
Sun P., Ju H., Liu Z., Ning Q., Zhang J., Zhao X., Huang Y., Ma Z. and Li Y. (2013). Bioinformatics Resources and Tools f or Conformational B-Cell Epitope Prediction. Comput. Math. Methods. Med. 2013, 1-11.
Tabatabai L.B. and Pugh Jr. (1995). Modulation of immune responses in Balb/c mice vaccinated with Brucella abortus Cu-Zn superoxide dismutase synthetic peptide vaccine. Vaccine. 12, 919-924.
Toes R.E., Nussbaum A.K. and Degermann S. (2001). Discrete cleavage motifs of constitutive and immuno proteasomes revealed by quantitative analysis of cleavage products. J. Exp. Med. 194(1), 1-12.
Vizcaíno N., Zygmunt M.S., Verger J.M., Grayon M. and Cloeckaert A. (1997). Localization and characterization of a specific linear epitope of the Brucella DnaK protein. FEMS Microbiol. Lett. 154, 117-122.
Wang W., Wu J., Qiao J., Weng Y., Zhang H., Liao Q., Qiu J., Chen C., Allain J.P. and Li C. (2014). Evaluation of humoral and cellular immune responses to BP26 and OMP31 epitopes in the attenuated Brucella melitensis vaccinated sheep. Vaccine. 32(7), 825-833.
Wass M.N., Kelley L.A. and Sternberg M.J.E. (2010). 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids. Res. 38, 469-473.
Wass M.N. and Sternberg M.J. (2009). Prediction of ligand binding sites using homologous structures and conservation at CASP8. Proteins. 77(9), 147-151.
Yamaguchi H., Miura H. and Ohsumi K. (1996). Analysis of the epitopes recognized by mouse monoclonal antibodies directed to Yersinia enterocolitica heat-shock protein 60. Microbiol. Immunol. 40, 77-80.
Zhang Z.W., Zhang Y.G. and Wang Y.L. (2010). Screening and identification of B cell epitopes of structural proteins of foot-and-mouth disease virus serotype Asia1. Vet. Microbiol. 140(1), 25-33.
Zhang W., Liu J., Zhao M. and Li Q. (2012). Predicting linear B- cell epitopes by using sequence-derived structural and physico-chemical features. Int. J. Data. Min. Bioinform. 6, 557-569.