کاربرد مدلهای ریاضی برای تخمین میزان انرژی قابل متابولیسم اقلام خوراکی انرژیزا در طیور
Subject Areas : CamelM. Sedghi 1 , K. Tayebipoor 2 , B. Poursina 3 , M. Eman Toosi 4 , P. Soleimani Roudi 5
1 - Kian Jooje Aria Company, Mashhad, Iran
2 - Kian Jooje Aria Company, Mashhad, Iran
3 - Kian Jooje Aria Company, Mashhad, Iran
4 - Kian Jooje Aria Company, Mashhad, Iran
5 - Kian Jooje Aria Company, Mashhad, Iran
Keywords: شبکه عصبی مصنوعی, ترکیب شیمیایی, انرژی متابولیسمی, رگرسیون خطی چندگانه, رگرسیون, گام به گام,
Abstract :
این مطالعه با هدف بررسی امکان پیشبینی انرژی قابل متابولیسم ظاهری (AME) در طیور با استفاده از آنالیز تقریبی در نمونههای گندم (51 نمونه)، جو (56 نمونه) و یولاف (34 نمونه) انجام شد. از آنالیز رگرسیون گام به گام برای ارزیابی رابطه بین AME با نشاسته، عصاره اتری (EE)، فیبر خام (CF)، قندهای محلول (SS)، خاکستر (ash) و پروتئین خام (CP) در نمونههای گندم و جو، و ماده خشک (DM) ، CF، Ash و CP در نمونههای یولاف استفاده شد. براساس نتایج رگرسیون گام به گام، SS، CF و Ash، بهترین متغیرهای ورودی برای پیشبینی AME در نمونههای گندم بودند. بعلاوه، نشاسته،CF و EE در نمونه های جو و CF و CP در نمونههای یولاف بهترین پارامترهای ورودی جهت تخمین AME شناسایی شدند. همچنین برای بدست آوردن بهترین مدل تخمین زننده AME در این غلات با استفاده از ورودیهای انتخاب شده از رگرسیون خطی چندگانه (MLR) و شبکه عصبی مصنوعی (ANN) استفاده شد. نتایج MLR و ANN نیز نشان داد که SS، CF و ash فاکتورهای مؤثری جهت تخمین AME درگندم میباشند. برای پیشبینی AME نمونههای جو CF، EE و نشاسته متغییرهای مستقل خوبی به شمار میآیند. همچنین CF و CP پارامترهای خوبی برای پیشبینی AME در نمونههای یولاف میباشند. در ارتباط با کارایی مدلها، دقت مدل ANN بالاتر از مدل MLR بود. بر اساس این نتایج، میتوان چنین نتیجهگیری کرد که استفاده از ترکیبات شیمیایی موجود در نمونههای گندم، جو و یولاف، همراه با مدل ANN، روش کاربردی جهت پیشبینی AME این غلات در تغذیه طیور میباشد.
Choct M., Hughes R.J. and Annison G. (1999). Apparent metabolisable energy and chemical composition of Australian wheat in relation to environmental factors. Aust-tralas J. Agr. Res. 50, 447-451.
Classen H.L., Campbell G.L. and Grootwassink J.W.D. (1988). Improved feeding value of Saskatchewan-grown barley for chickens with dietary enzyme supplementation. Can. J. Anim. Sci. 68, 1253-1259.
Coates B.J., Srrucer S.J., SurvrrTtns J.D. and Bayley H.S. (1977). Metabolizable energy values and chemical and physical characteristics of wheat and barley. Can. J. Anim. Sci. 57, 195-207.
Ebadi M.R., Sedghi M., Golian A. and Ahmadi H. (2011). Prediction of the true digestible amino acid contents from the chemical composition of sorghum grain for poultry. Poult. Sci. 90, 2397-2401.
Fairbairn S.L., Patience J.F., Classen H.L. and Zijlstra R.T. (1999). The energy content of barley fed to growing pigs: Characterizing the nature of its variability and developing prediction equations for its estimation. J. Anim. Sci. 77, 1502-1512.
Jeroch H. and Danicke S. (1996). Barley in poultry feeding: a review. World Poult. Sci. J. 51, 271-291.
Kobayashi K. and Salam M.U. (2000). Comparing simulated and measured values using mean squared deviation and its components. Agr. J. 92, 345-352.
Losada B., Garcia Rebollar P., Cachaldora P., Alvarez C., Mendez J. and Deblas C. (2009). A comparison of the prediction of apparent metabolisable energy content of starchy grains and cereal by-products for poultry from its chemical components, in vitro analysis or near-infrared reflectance spectroscopy. Span. J. Agric. Res. 7, 813-823.
Lozano J., Novic M., Rius F.X. and Zupan J. (1995). Modelling metabolic energy by neural networks. Chemometr. Intel. Lab. Sys. 28, 61-72.
Mariano F.C., Paixão C.A., Lima R.R., Alvarenga R.R., Rodrigues P.B. and Nascimento G.A. (2013).Prediction of the energy values of feedstuffs for broilers using meta-analysis and neural networks. Anim.7, 1440-1445.
Mc Cracken K.J. and Quintin G. (2000). Metabolisable energy content of diets and broiler performance as affected by wheat specific weight and enzyme supplementation. Br. Poult. Sci. 41, 332-342.
Metayer J.P., Grosjean F. and Castaing J. (1993). Study of variability in French cereals. Anim. Feed Sci. Technol. 43, 87-108.
NRC. (1994). Nutrient Requirements for Poultry. 9th rev. ed. National Academy Press, Washington, DC.
Nascimento G.A.J., Rodrigues P.B., Freitas R.T.F., Reis Neto R.V., Lima R.R. and Allaman I.B. (2011). Prediction equations to estimate metabolizable energy values of energetic concentrate feedstuffs for poultry by the meta-analysis process. Arq. Bras. Med. Vet. Zootech. 63, 222-230.
Noblet J. and Perez J.M. (1993). Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. J. Anim. Sci. 71, 3389-3398.
Paris R.L. (2000). Potential of hulless winter barley as an improved feed. Ph D Thesis, University of Maryland Eastern Shore, Blacksburg, Virginia, USA.
Peltonen Sainio P., Kontturi M. and Rajala A. (2004). Impact dehulling oat grain to improve quality of on-farm produced feed: I. Hullability and associated changes in nutritive value and energy content. Agric. Food Sci. 13, 18-28.
Pirgozliev V.R., Birch C.L., Rose S.P., Kettlewell P.S. and Bedford M.R. (2003). Chemical composition and the nutritive quality of different wheat cultivars for broiler chickens. Brit. Poult. Sci. 44, 464-475.
Roush W.B. and Cravener T.L. (1997). Artificial neural network prediction of amino acid levels in feed ingredients. Poult. Sci. 76, 721-727.
Roush W.B., Kirby Y.K., Cravener T.L. and Wideman R.F. (1996). Artificial neural network prediction of ascites in broilers. Poult. Sci. 75, 1479-1487.
SAS Institute. (2003). SAS/STAT Software Version 9 Cary, NC: SAS Institute Inc.
Sedghi M., Ebadi M.R., Golian A. and Ahmadi H. (2011). Estimation and modeling true metabolizable energy of sorghum grain for poultry. Poult. Sci. 90, 1138-1143.
Sedghi M., Golian A., Soleimani Roudi P., Ahmadi H. and Aami Azgadi, M. (2012). Relationship between color and tannin content in sorghum grain: application of image analysis and artificial neural network. Brazilian J. Poult. Sci. 14, 57-62.
Sibbald I.R. and Price K. (1976). Relationships between metabolizabte energy values for poultry and some physical and chemical data describing Canadian wheats, oats and barleys. Can. J. Anim. Sci. 56, 255-268.
Sibbald I.R. (1976). A bioassay for true metabolizable energy in feeding stuffs. Poult. Sci. 55, 303-308.
Soleimani Roudi P., Golian A. and Sedghi M. (2012). Metabolizable energy and digestible amino acid prediction of wheat using mathematical models. Poult. Sci. 91, 2055-2062.
STAT SOFT. (2009). Statistica (Data Analysis Software System). Version 8.0. Tulsa, OK. Statistica Software Incorporation.
Steenfeldt S. (2001). The dietary effect of different wheat cultivars for broiler chickens. Br. Poult. Sci. 42, 595-609.
Svihus B. and Gullord M. (2002). Effect of chemical content and physical characteristics on nutritional value of wheat, barley and oats for poultry. Anim. Feed Sci. Technol. 102, 71-92.
Villamide M.J., Fuente J.M., Perezde Ayala P. and Flores A. (1997). Energy evaluation of eight barley cultivars for poultry: effect of dietary enzyme addition. Poult. Sci. 76, 834-840.
Zhang W.J., Campbell L.D. and Stothers S.C. (1994) An investigation of the feasibility of predicting nitrogen-corrected true metabolizable energy (TMEn) content in barley from chemical composition and physical characteristics. Can. J. Anim. Sci. 74, 355-360.