تنوع آللی شناسایی شده ژن MYF5 در شترهای دوکوهانه
Subject Areas : Camelن. هدایت-ایوریق 1 , س.ر. میرایی-آشتیانی 2 , م. مرادی شهر بابک 3 , و. واحدی 4 , ح. عبدی 5
1 - Department of Animal Science, Faculty of Agricultural Science, University of Mohaghegh Ardabili, Ardabil, Iran
2 - Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 - Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
4 - Department of Animal Science, Moghan College Of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
5 - Department of Animal Science, Faculty of Agricultural Science, University of Mohaghegh Ardabili, Ardabil, Iran
Keywords: PCR-SSCP, SNP, شتر دو کوهانه, ژن MYF5,
Abstract :
فاکتور میوژنیک 5 (MYF5) نقش مهمی در رشد و توسعه ماهیچه دارد و به عنوان یک ژن کاندیدا برای صفات رشد و کیفیت گوشت شناخته میشود. ژن MYF5 در دوره تکثیر میوبلاستها بیان میشود که شامل سه اگزون میباشد. به منظور بررسی وجود یا عدم وجود تنوع ژنتیکی در ژن فاکتور میوژنیک 5 در شترهای دو کوهانه ناحیه اگزون 1 ژن MYF5 از روش نشانگر PCR-SSCP استفاده شد. نتایج نشان داد که چهار الگوی متفاوت از اگزون I در نمونههای مورد مطالعه وجود دارد. توالییابی از این الگوها نشان داد که دو نوع چندشکلی تک نوکلئوتیدی (SNP) در موقعیتهای 98 و 366 وجود دارد که به ترتیب منجر به تغییر A به G و G به A میشود این جهشها باعث ایجاد چهار هاپلوتیپ میشود که در ارتباط با الگوهای مختلف شناسایی شده بودند. تنوع و جهش مشاهده شده در این مطالعه منجر به تغییر اسیدآمینه سرین به آسپارژین و تریپتوفان به کدون متوقف کننده میشود که میتوان از آن در توسعه و بهبود برنامههای اصلاح نژادی شتر برای استفاده در انتخاب به کمک ژن به کار گرفته شود.
ArnasonU., Gullberg A., Gretarsdottir S., Ursing B. and Janke A. (2000). The mitochondrial genome of the sperm whale and a new molecular reference for estimating eutherian divergence dates. J. Mol. Evol. 50(6), 569-578.
Bhuiyan M.S.A., Kim N.K., Cho Y.M., Yoon D., Kim K.S., Jeon J.T. and LeeJ.H. (2009). Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livest. Sci. 126, 292-297.
Buckingham M. (2002). The formation of skeletal muscle: from somite to hand. J. Anat. 201(5), 421.
Delsuc F., Vizcaino S.F. and Douzery E.J. (2004). Influence of tertiary paleoenvironmental changes on the diversification of south American mammals: a relaxed molecular clock study within xenarthrans. BMC Evol. Biol. 4, 11.
Francetic T. and Qiao L. (2011). Skeletal myogenesis and MYF5 activation. Transcription. 2(3), 109-114.
Jing F.K., Xiang-Long L., Rong-Yan Z., Lan-Hui L., Fu-Jun F. and Xiu-Li G. (2008). Bioinformatics analysis of lactoferrin gene for several species. Biochem. Genet. 46, 312-322.
Jiyeon S., Jae D.O., Cheong C., Kun W.L., Hak K.L., Dong S.S., Gwang J.J., Kyung D.P. and Hong S.K. (2011). Association between polymorphisms of MYF5 and POU1F1 genes with growth and carcass traits in Hanwoo (Korean cattle). Gen. Genom. 33, 425-430.
Köhler-RollefsonI. (2005). Camels on rapid decline in Asia. Pp. 1-7 in Leag. Pastor. Peaples. Endogen. Livest. Dev. Ober-Ramstadt, Germany.
Kumar S. and Hedges S.B. (1998). A molecular timescale for vertebrate evolution. Nature. 392(6679), 917-920.
Li W.H. and Dan G. (1991). Expand Fundamentals of Molecular Evolution. Sinauer Associates Inc., Sunderland.
Lynch M. and Crease T.J. (1990). The analysis of population survey data on DNA sequence variation. Mol. Biol. Evol. 7, 377-394.
Maak S., Neumann K. and Swalve H.H. (2006). Identification and analysis of putative regulatory sequences for the MYF5/MYF6 locus in different vertebrate species. Genetics. 379, 141-147.
Moghadam H.K., Ferguson M.M., Rexroad C.E., Coulibaly I. and Danzmann R.G. (2007). Genomic organization of the IGF1, IGF2, MYF5, MYF6 and GRF/PACAP genes across Salmoninae genera. Anim. Genet. 38, 527-532.
Nattrass G.S., Quigley S.P., Gardner G.E., Bawden C.S., McLaughlan C.J. and Hegarty R.S. (2006). Genotypic and nutritional regulation of gene expression in two sheep hindlimb muscles with distinct myofibre and metabolic characteristics. Australian J. Agr. Res. 57, 691-698.
Nikaido M., Kawai K., Cao Y., Harada M., Tomita S., Okada N. and Hasegawa M. (2001). Maximum likelihood analysis of the complete mitochondrial genomes of eutherians and a reevaluation of the phylogeny of bats and insectivores. J. Mol. Evol. 53(4), 508-516.
Pownall M.E., Gustafsson M.K. and Emerson C.P. (2002). Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Ann. Rev. Cell. Dev. Biol. 18, 747-783.
Sabourin L.A. and Rudnicki M.A. (2000). The molecular regulation of myogenesis. Clin. Genet. 57, 16-25.
Saikia P.P., Rout P.K. and Nigam R. (2014). Polymorphism of MYF5 gene in Barbari goats. North-East Vet. 14, 11-14.
Sajee K., Huitong Z. and Jon G.H.H. (2009). Allelic variation in the porcine MYF5 gene detected by PCR-SSCP. Mol. Biol. 41, 208-212.
Sanguinetti C.J., Neto E.D. and Simpson A.J.G. (1994). Rapid silver staining and recovery of PCR product separate on polyacrilamid gels. Biotechniques. 17, 915-919.
Shah M.G., Qureshi A.S., Reissmann M. and Schwartz H.J. (2007). Single nucleotide polymorphism in the coding region of MYF5 gene of the camel (Camelus dromedarius). Pakistan Vet. J. 27(4), 163-166.
Tajima F. (1983). Evolutionary relationship of DNA sequences in finite populations. Genetics. 105, 437-460.
Tang B., Cao G.F. and Yang Y.F. (2006). Developments of RACE assay for amplification of full length sequence of camel b-defensin cDNA. Vet. Sci. China. 36(2), 151-156.
Te Pas M.F., Verburg F.J., Gerritsen C.L. and de Greef K.H. (2000). Messenger ribonucleic acid expression of the MYOD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate. J. Anim. Sci. 78, 69-77.
Ujan J.A., Zan L.S., Wang H.B. and Ujan S.A. (2011a). The effect of myogenic factor 5 polymorphism on the meat quality in Chinese Bos taurus. Agric. Cons. Sci. 76, 373-377.
Ujan J.A., Zan L.S., Ujan S.A., Adoligbe C. and Wang H.B. (2011b). Back fat thickness and meat tenderness are associated with a 526 T→A mutation in the exon 1 promoter region of the MYF5 gene in Chinese Bos taurus. Genet. Mol. Res. 10(7), 3070-3079.
Urbanski P., Flisikowski K., Starzyñski R.R., Kuryl J. and Kamyczek M. (2006). A new SNP in the promoter region of the porcine MYF5 gene has no effect on its transcript level in longissimus dorsi. J. Appl. Genet. 47(1), 1-3.
Verner J., Humpolicek P. and Knol A. (2007). Impact of MYOD family genes on pork traits in Large White and Landrace pigs. J. Anim. Breed. Genet. 124, 81-85.
Yin H., Zhang Z., Lan X., Zhao X., Wang Y. and Zhu Q. (2011). Association of MYF5, MYF6 and MYOG gene polymorphism with carcass traits in Chinese meat type quality chicken populations. J. Anim. Vet. Adv. 10(6), 704-708.