اثرات همبستگی نانوسلنیوم و اسید لینولئیک مزدوج بر عملکرد، متابولیسم چربی و سیستم ایمنی برههای نر مغانی
Subject Areas : Camelش. قادرزاده 1 , ف. میرزایی آقجه قشلاق 2 , س. نیکبین 3 , نوید شاد 4
1 - Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
2 - Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
3 - Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
4 - Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
Keywords: عملکرد, مغانی, بره, اسید لینولئیک مزدوج, نانوسلنیوم,
Abstract :
این پژوهش اولین مطالعه در رابطه با بررسی اثرات نانوسلنیوم (nano-Se) و اسید لینولئیک مزدوج (CLA) بر روی بیان ژنهای گلوتاتیون پروکسیداز 1 (GPX1) و سلنوپروتئین W1 (SEPW1) در کبد و ژنهای گیرنده متأثر از تکثیرکنندههای پروکسیزومی نوع گاما (PPARγ) و استئاروئیل کوانزیم آ دساچوراز 1 (SCD1) در دنبه و فاکتورهای عملکردی، بیومتری و خون برههای نر مغانی میباشد. در این طرح از 30 رأس بره نر مغانی 3 ماهه با وزن 250/0±30 کیلوگرم، در قالب یک طرح کاملاً تصادفی با روش فاکتوریل 3 × 2 با استفاده از مکمل CLA (در سطوح 0 و 15 گرم بر کیلوگرم ماده خشک جیره) و nano-Se (در سطوح 0، 1 و 2 گرم بر کیلوگرم ماده خشک جیره) استفاده گردید. برهها در پایان آزمایش ذبح گردیدند (90 روزگی). مصرف جیرههای آزمایشی در تیمارهای حاوی مخلوط CLA و nano-Se گرایش به کاهش وزن برهها را در مقایسه با تیمار شاهد نشان میداد. هیچ یک از جیرههای آزمایشی اثری بر پارامترهای بیومتری نداشتند. برخی از پارامترهای خونی همچون لیپوپروتئین با چگالی بالا (HDL)، لیپوپروتئین با چگالی کم (LDL)، تیروکسین (T4)، تری یودوتیرونین (T3) و گلوتاتیون پراکسیداز (GPX) تحت تاثیر مکمل nano-Se جیره قرار گرفتند (05/0<P) اما گلوکز، تری گلیسرید (TG)، لیپوپروتئین با چگالی بسیار کم VLDL، پروتئین کل (TP) و کلسترول هیچگونه اثر معنیداری را نشان ندادند. نتایج آنالیز qPCR نشان داد که بالاترین سطح نانوسلنیوم (2 گرم بر کیلوگرم ماده خشک ) به صورت معنیداری باعث افزایش بیان ژن GPX1 و SEPW1 در کبد شده است (05/0>P)). حضور CLA در جیره باعث افزایش بیان ژن PPARγ و کاهش بیان ژن SCD1 در دنبه گردید (01/0>P). از این آزمایش میتوان نتیجه گرفت که استفاده از nano-Se و CLA به صورت متفاوتی باعث افزایش بیان ژنهای مرتبط به خود در کبد و دنبه میشوند و اثرات مفیدی بر برخی از فاکتورهای خونی دارند که این نتایج اثبات میکند که nano-Se و CLA دارای اثرات متقابل همافزایی بر فاکتورهای مذکور نیستند.
Bartoň L., Bureš D., Kott T. and Řehák D. (2011). Effect of sex and age on bovine muscle and adipose fatty acid composition and stearoyl-CoA desaturase mRNA expression. Meat Sci. 89, 444-450.
Chen Z., Herdt T.H., Liesman J.S., Ames N.K. and Emery R.S. (1995). Reduction of bovine plasma cholesterol concentration by partial interruption of enterohepatic circulation of bile salts: a novel hypocholesterolemic model. J. Lipid Res. 36, 1544-1556.
Corl B.A., Baumgard L.H., Dwyer D.A., Griinari J.M., Phillips B.S. and Bauman D.E. (2001). The role of Δ9-desaturase in the production of cis-9, trans-11 CLA. J. Nutr. Biochem. 12, 622-630.
Dalir-Naghadeh B. and Rezaei S.A. (2008). Assessment of serum thyroid hormone concentrations in lambs with selenium deficiency myopathy. Am. J. Vet. Res. 69, 659-663.
Elsom R., Sanderson P., Hesketh J.E., Jackson M.J., Fairweather-Tait S.J., Åkesson B. and Arthur J.R. (2006). Functional markers of selenium status: UK Food Standards Agency workshop report. British J. Nutr. 96, 980-984.
Gabryszuk M., Czauderna A.B., Strzałkowska N. and Jóźwik J.K. (2007). The effect of diet supplementation with Se, Zn and vitamin E on cholesterol, CLA and fatty acid. Anim. Sci. Pap. Rep. 25, 25-33.
Galan-Chilet I., Guallar E., Martin-Escudero J.C., De Marco G., Dominguez-Lucas A., Gonzalez-Manzano I., Lopez-Izquierdo R., Redon J., Chaves F.J. and Tellez-Plaza M. (2015). Do genes modify the association of selenium and lipid levels? Antioxid. Redox. Sign. 22, 1352-1362.
Ghaderzadeh S., Mirzaei Aghjeh-Gheshlagh F., Nikbin S. and Navidshad B. (2016). Review on properties of selenium in animal nNutrition. Iranian J. Appl. Anim. Sci. 6, 753-761.
Harvatine K.J., Robblee M.M., Thorn S.R., Boisclair Y.R. and Bauman D.E. (2014). Trans-10, cis-12 CLA dose-dependently inhibits milk fat synthesis without disruption of lactation in C57BL/6J Mice–4. J. Nutr. 144, 1928-1934.
Heikkinen S., Auwerx J. and Argmann C.A. (2007). PPARγ in human and mouse physiology. Biochim. Biophys. Acta. 1771, 999-1013.
Herdt T.H. and Smith J.C. (1996). Blood-lipid and lactation-stage factors affecting serum vitamin E concentrations and vitamin E cholesterol ratios in dairy cattle. J. Vet. Diagn. Invest. 8, 228-232.
Kieliszek M., Lipinski B. and Błażejak S. (2017). Application of sodium selenite in the prevention and treatment of cancers. Cells. 6(4), 39-48.
Kumar N., Garg A.K., Mudgal V., Dass R.S., Chaturvedi V.K. and Varshney V.P. (2008). Effect of different levels of selenium supplementation on growth rate, nutrient utilization, blood metabolic profile, and immune response in lambs. Biol. Trace. Elem. Res. 126, 44-56.
Lambertini L., Morittu V.M., Vignola G., Zaghini G. and Formigoni A. (2005). Study on production of light lambs reared in Abruzzo region by traditional way: First results. Proc. SIS. Vet. 59, 449-450.
Lawler T.L., Taylor J.B., Finley J.W. and Caton J.S. (2004). Effect of supranutritional and organically bound selenium on performance, carcass characteristics, and selenium distribution in finishing beef steers 1. J. Anim. Sci. 82, 1488-1493.
Levander O.A. and Beck M.A. (1997). Interacting nutritional and infectious etiologies of Keshan disease. Biol. Trace. Elem. Res. 56, 5-21.
Li J.L., Li H.X., Li S., Jiang Z.H., Xu S.W. and Tang Z.X. (2011). Selenoprotein W gene expression in the gastrointestinal tract of chicken is affected by dietary selenium. Biometals. 24, 291-299.
Liepa G.U., Beitz D.C. and Linder J.R. (1978). Cholesterol synthesis in ruminating and nonruminating goats. J. Nutr. 108, 535-543.
Liu Y., Zhao H., Zhang Q., Tang J., Li K., Xia X.J. and Lei X.G. (2012). Prolonged dietary selenium deficiency or excess does not globally affect selenoprotein gene expression and / or protein production in various tissues of pigs–3. J. Nutr. 142, 1410-1416.
Livak K.J. and Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 25, 402-408.
Lubos E., Loscalzo J. and Handy D.E. (2011). Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox. Signal. 15, 1957-1997.
Mainieri D., Summermatter S., Seydoux J., Montani J.P., Rusconi S., Russell A.P. and Summermatter S. (2006). A role for skeletal muscle stearoyl-CoA desaturase 1 in control of thermogenesis. FASEB J. 20, 1751-1753.
Malapaka R.R., Khoo S., Zhang J., Choi J.H., Zhou X.E., Xu Y. and Chang L. (2012). Identification and mechanism of 10-carbon fatty acid as modulating ligand of peroxisome proliferator-activated receptors. J. Biol. Chem. 287, 183-195.
Medrano J.F., Islas-Trejo A.D., Johnson A.M. and De Peters E.J. (2007). Genomic structure and expression of the bovine stearoyl-CoA desaturase gene. http://www.ncbi.nlm.nih.gov/Genbank/index.html. AccessedSep. 2006.
Netto A.S., Zanetti M.A., Del Claro G.R., de Melo M.P., Vilela F.G. and Correa L.B. (2014). Effects of copper and selenium supplementation on performance and lipid metabolism in confined brangus bulls. Asian-Australasian J. Anim. 27, 488-494.
NRC. (2007). Nutrient Requirements of Small Ruminants, Sheep, Goats, Cervids, and New World Camelids. National Academy Press, Washington, D.C., USA.
Ntambi J.M., Miyazaki M., Stoehr J.P., Lan H., Kendziorski C.M., Yandell B.S. and Attie A.D. (2002). Loss of stearoyl–CoA desaturase-1 function protects mice against adiposity. Proc. Natl. Acad. Sci. 99, 11482-11486.
Payne R.L., Lavergne T.K. and Southern L.L. (2005). Effect of inorganic versus organic selenium on hen production and egg selenium concentration. Poult. Sci. 84, 232-237.
Pechova A., Misurova L., Pavlata L. and Dvorak R. (2008). Monitoring of changes in selenium concentration in goat milk during short-term supplementation of various forms of selenium. Biol. Trace. Elem. Res. 121, 180-191.
Pinto A., Juniper D.T., Sanil M., Morgan L., Clark L., Sies H. and Steinbrenner H. (2012). Supranutritional selenium induces alterations in molecular targets related to energy metabolism in skeletal muscle and visceral adipose tissue of pigs. J. Inorg. Biochem. 114, 47-54.
Ponce M., Giraldez I., Calero S., Ruiz-Azcona P., Morales E., Fernández-Díaz C. and Hachero-Cruzado I. (2018). Toxicity and biochemical transformation of selenium species in rotifer (Brachionus plicatilis) enrichments. Aquaculture. 484, 105-111.
Qu X., Huang K., Deng L. and Xu H. (2000). Selenium deficiency-induced alterations in the vascular system of the rat. Biol. Trace. Elem. Res. 75, 119-128.
Ran L., Wu X., Shen X., Zhang K., Ren F. and Huang K. (2010). Effects of selenium form on blood and milk selenium concentrations, milk component and milk fatty acid composition in dairy cows. J. Sci. Food Agric. 90, 2214-2219.
SAS Institute. (2003). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Sato K., Fukao K., Seki Y. and Akiba Y. (2004). Expression of the chicken peroxisome proliferator-activated receptor-γ gene is influenced by aging, nutrition, and agonist administration. Poult. Sci. 83, 1342-1347.
Schiavon S., Tagliapietra F., Dal Maso M., Bailoni L. and Bittante G. (2010). Effects of low-protein diets and rumen-protected conjugated linoleic acid on production and carcass traits of growing double-muscled Piemontese bulls 1. J. Anim. Sci. 88, 3372-3383.
Shi L., Xun W., Yue W., Zhang C., Ren Y., Shi L. and Lei F. (2011). Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Rumin. Res. 96, 49-52.
Spiegelman B.M. (1998). PPAR-gamma: Adipogenic regulator and thiazolidinedione receptor. Diabetes. 47, 507-514.
Stone C.A., Kawai K., Kupka R. and Fawzi W.W. (2010). Role of selenium in HIV infection. Nutr. Rev. 68, 671-681.
Sunde R.A. (2017). Effects of initial selenium status on apparent dietary selenium requirements in rodents. FASEB J. 31, 802-321.
Tan G.D., Savage D.B., Fielding B.A., Collins J., Hodson L., Humphreys S.M. and Karpe F. (2008). Fatty acid metabolism in patients with PPARγ mutations. J. Clin. Endocrinol. Metab. 93, 4462-4470.
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A. and Speleman F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3(7), 34-41.
Vignola G., Lambertini L., Mazzone G., Giammarco M., Tassinari M., Martelli G. and Bertin G. (2009). Effects of selenium source and level of supplementation on the performance and meat quality of lambs. Meat Sci. 81, 678-685.
Wang X., Zhang W., Chen H., Liao N., Wang Z., Zhang X. and Hai C. (2014). High selenium impairs hepatic insulin sensitivity through opposite regulation of ROS. Toxicol. Lett. 224, 16-23.
Wang X.L., Yang C.P., Xu K. and Qin O.J. (2010). Selenoprotein W depletion in vitro might indicate that its main function is not as an antioxidative enzyme. Biochem (Moscow). 75, 201-207.
Wichtel J.J., Craigie A.L., Freeman D.A., Varela-Alvarez H. and Williamson N.B. (1996). Effect of selenium and iodine supplementation on growth rate and on thyroid and somatotropic function in dairy calves at pasture. J. Dairy Sci. 79, 1865-1872.
Yang J.G., Hill K.E. and Burk R.F. (1989). Dietary selenium intake controls rat plasma selenoprotein P concentration. J. Nutr. 119, 1010-1012.
Yu D., Li J.L., Zhang J.L., Gao X.J. and Xu S. (2011). Effects of dietary selenium on selenoprotein W gene expression in the chicken immune organs. Biol. Trace. Elem. Res. 144, 678-687.
Zhan X., Wang H., Yuan D., Wang Y. and Zhu F. (2014). Comparison of different forms of dietary selenium supplementation on gene expression of cytoplasmic thioredoxin reductase, selenoprotein P, and selenoprotein W in broilers. Czech. J. Anim. Sci. 59, 571-578.
Zhou J.C., Zhao H., Li J.G., Xia X.J., Wang K.N., Zhang Y.J. and Lei X.G. (2009). Selenoprotein gene expression in thyroid and pituitary of young pigs is not affected by dietary selenium deficiency or excess. J. Nutr. 139, 1061-1066.