اثرات سطوح مختلف نشاسته مقاوم بر عملکرد رشد و مرفولوژی ایلئوم در جوجههای گوشتی: در مقایسه با فروکتوالیگوساکارید و زینک باسیتراسین
Subject Areas : Camelک. لطفی 1 , ع. مهدوی 2 , ا. جبلی جوان 3 , ح. استاجی 4 , ب. دارابیقانع 5
1 - Department of Animal Nutrition, Rearing and Breeding, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
2 - Department of Animal Nutrition, Rearing and Breeding, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
3 - Department of Health Food, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
4 - Department of Pathobiology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
5 - Department of Animal Science, Faculty of Agricultural Science, University of Mohaghegh Ardabili, Ardabil, Iran
Keywords: جوجه گوشتی, آنتیبیوتیک, پریبیوتیک, نشاسته مقاوم,
Abstract :
این مطالعه به منظور بررسی اثرات سطوح مختلف نشاسته مقاوم بر عملکرد و مرفولوژی ایلئوم در جوجههای گوشتی در مقایسه با فروکتوالیگوساکارید و زینک باسیتراسین انجام شد. گروههای آزمایشی شامل گروه کنترل (جیره پایه بدون افزودنی)، چهار گروه دریافتکننده سطوح مختلف نشاسته مقاوم نوع 2 (شامل سطوح 1، 2، 3 و 4 درصد نشاسته مقاوم در جیره پایه)، گروه دریافتکننده فروکتو الیگوساکارید (به میزان 4/0 درصد در جیره پایه) و گروه دریافتکننده زینک باسیتراسین (به میزان 50 میلی گرم در هر کیلوگرم جیره پایه) بودند. نتایج خوراک مصرفی در روز 35 نشان داد که گروههای دریافتکننده 2 و 3 درصد نشاسته مقاوم تفاوت معنیداری با گروههای دریافتکننده فروکتو الیگوساکارید و زینک باسیتراسین ندارند. بیشترین وزن بدن و کمترین ضریب تبدیل خوراک در گروه دریافتکننده زینک باسیتراسین مشاهده شد (05/0P<). وزن بدن جوجهها در گروههای دریافتکننده 3 و 4 درصد نشاسته مقاوم تفاوت معنیداری با گروه دریافتکننده فروکتوالیگوساکارید نداشتند. گروههای دریافتکننده 3 و 4 درصد نشاسته مقاوم طول پرز بالاتر (05/0P<) و عمق کریپت کمتری در مقایسه با گروه دریافتکننده فروکتوالیگوساکارید داشتند. نتایج این تحقیق نشان داد که گروه دریافتکننده زینک باسیتراسین عملکرد بهتری نسبت به سایر گروهها داشته است؛ به نظر میرسد افزودن 3 و 4 درصد نشاسته مقاوم به جیره جوجههای گوشتی، عملکردی مشابه با فروکتوالیگوساکارید دارد.
Adhikari P.A. and Kim W.K. (2017). Overview of Prebiotics and Probiotics: Focus on Performance, Gut Health and Immunity–A Review. Ann. Anim. Sci. 17, 949-966.
Alagawany M., El-Hack M.E.A., Farag M.R., Sachan S., Karthik K. and Dhama K. (2018). The use of probiotics as eco-friendly alternatives for antibiotics in poultry nutrition. Environ. Sci. Pollut. Res. 25,1-8.
Ariza-Nieto C., Rodriguez D., Ariza-Nieto M. and Afanador G. (2012). Effects of resistant starch of common and native potato on broiler performance. FASEB J. 26, 824-825.
Ashwar B.A., Gani A., Shah A., Wani I.A. and Masoodi F.A. (2016). Preparation, health benefits and applications of resistant starch: A review. Starch Stärke. 68, 287-301.
Bhandari S., Nyachoti C. and Krause D. (2009). Raw potato starch in weaned pig diets and its influence on postweaning scours and the molecular microbial ecology of the digestive tract. J. Anim. Sci. 87, 984-993.
Castanon J. (2007). History of the use of antibiotic as growth promoters in European poultry feeds. Poult. Sci. 86, 2466-2471.
Catalá-Gregori P., García V., Madrid J., Orengo J. and Hernández F. (2007). Response of broilers to feeding low-calcium and total phosphorus wheat-soybean based diets plus phytase: Performance, digestibility, mineral retention and tibiotarsus mineralization. Canadian J. Anim. Sci. 87, 563-569.
Clark M.J. and Slavin J.L. (2013). The effect of fiber on satiety and food intake: A systematic review. J. Am. Coll. Nutr. 32, 200-211.
Dibner J. and Richards J. (2005). Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 84, 634-643.
Emami N.K., Samie A., Rahmani H. and Ruiz-Feria C. (2012). The effect of peppermint essential oil and fructooligosaccharides, as alternatives to virginiamycin, on growth performance, digestibility, gut morphology and immune response of male broilers. Anim. Feed Sci. Technol. 175, 57-64.
Engberg R.M., Hedemann M.S., Leser T. and Jensen B.B. (2000). Effect of zinc bacitracin and salinomycin on intestinal microflora and performance of broilers. Poult. Sci. 79, 1311-1319.
Feulgren R. and Rossenbeck H. (1924). Mikroskopisch-chemischer Nachweis einer Nucleinsäure vom Typus der Thymonucleinsäure und die-darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Hoppe-Seyler’s Z. Physiol. Chem. 135(5), 203-248.
Fuentes Zaragoza E., Sánchez Zapata E., Sendra E., Sayas E., Navarro C., Fernández López J. and Pérez Alvarez J.A. (2011). Resistant starch as prebiotic: A review. Starch Stärke. 63, 406-415.
Gadde U., Kim W., Oh S. and Lillehoj H.S. (2017). Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim. Health. Res. Rev. 18, 26-45.
Ganguly S., Dora K.C., Sarkar S. and Chowdhury S. (2013). Supplementation of prebiotics in fish feed: A review. Rev. Fish Biol. Fish. 23, 195-199.
Griggs J. and Jacob J. (2005). Alternatives to antibiotics for organic poultry production. J. Appl. Poult. Res. 14, 750-756.
Huff G., Huff W., Rath N., El-Gohary F., Zhou Z. and Shini S. (2015). Efficacy of a novel prebiotic and a commercial probiotic in reducing mortality and production losses due to cold stress and Escherichia coli challenge of broiler chicks. Poult. Sci. 94, 918-926.
Hume M. (2011). Food safety symposium: potential impact of reduced antibiotic use and the roles of prebiotics, probiotics, and other alternatives in antibiotic-free broiler production. Poult. Sci. 90, 2663-2669.
Iji P. and Tivey D. (1998). Natural and synthetic oligosaccharides in broiler chicken diets. World's Poult. Sci. J. 54, 129-143.
Khan R. and Naz S. (2013). The applications of probiotics in poultry production. World's Poult. Sci. J. 69, 621-632.
Kleessen B., Stoof G., Proll J., Schmiedl D., Noack J. and Blaut M. (1997). Feeding resistant starch affects fecal and cecal microflora and short-chain fatty acids in rats. J. Anim. Sci. 75, 2453-2462.
Leeson S., Namkung H., Antongiovanni M. and Lee E. (2005). Effect of butyric acid on the performance and carcass yield of broiler chickens. Poult. Sci. 84, 1418-1422.
Lockyer S. and Nugent A.P. (2017). Health effects of resistant starch. Nutr. Bull. 42, 10-41.
Ma Z. and Boye J.I. (2017) Research advances on structural characterization of resistant starch and its structure-physiological function relationship: A review. Crit. Rev. Food Sci. Nutr. 58, 1059-1083.
Montagne L., Pluske J. and Hampson D. (2003). A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol. 108, 95-117.
M'Sadeq S.A., Wu S.B., Swick R.A. and Choct M. (2015). Dietary acylated starch improves performance and gut health in necrotic enteritis challenged broilers. Poult. Sci. 94, 2434-2444.
Pryde S.E., Duncan S.H., Hold G.L., Stewart C.S. and Flint H.J. (2002). The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 217, 133-139.
Raigond P., Ezekiel R. and Raigond B. (2015). Resistant starch in food: A review. J. Sci. Food Agric. 95, 1968-1978.
Ricke S. (2015) Potential of fructooligosaccharide prebiotics in alternative and nonconventional poultry production systems. Poult. Sci. 94, 1411-1418.
SAS Institute. (2008). SAS®/STAT Software, Release 9.2. SAS Institute, Inc., Cary, NC. USA.
Shang Y., Regassa A., Kim J.H. and Kim W.K. (2015). The effect of dietary fructooligosaccharide supplementation on growth performance, intestinal morphology, and immune responses in broiler chickens challenged with Salmonella enteritidis lipopolysaccharides. Poult. Sci. 94, 2887-2897.
Suresh G., Das R.K., Kaur Brar S., Rouissi T., Avalos Ramirez A., Chorfi Y. and Godbout S. (2017). Alternatives to antibiotics in poultry feed: molecular perspectives. Crit. Rev. Microbiol. 44, 318- 335.
Topping D.L., Fukushima M. and Bird A.R. (2003). Resistant starch as a prebiotic and synbiotic: State of the art. Proc. Nutr. Soc. 62, 171-176.
Williams J., Mallet S., Leconte M., Lessire M. and Gabriel I. (2008). The effects of fructo-oligosaccharides or whole wheat on the performance and digestive tract of broiler chickens. Br. Poult. Sci. 49, 329-339.
Xu Z., Hu C., Xia M., Zhan X. and Wang M. (2003). Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 82, 1030-1036.
Yang X., Darko K.O., Huang Y., He C., Yang H., He S., Li J., Li J., Hocher B. and Yin Y. (2017). Resistant starch regulates gut microbiota: Structure, biochemistry and cell signalling. Cell. Physiol. Biochem. 42, 306-318.
Yang Y., Iji P. and Choct M. (2007). Effects of different dietary levels of mannanoligosaccharide on growth performance and gut development of broiler chickens. Asian-Australasian J. Anim. Sci. 20, 1084-1091.
Yang Y., Iji P. and Choct M. (2009). Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. World's Poult. Sci. J. 65, 97-114.
Zaman S.A. and Sarbini S.R. (2016). The potential of resistant starch as a prebiotic. Crit. Rev. Biotechnol. 36, 578-584.
Zhou L., Fang L., Sun Y., Su Y. and Zhu W. (2017). Effects of a diet high in resistant starch on fermentation end products of protein and mucin secretion in the colons of pigs. StarchStärke. 69, 1-7.