بررسی تجزیهپذیری شکمبهای و مدلسازی برای پیشبینی فراهمی مواد غذایی برای نشخوارکنندگان از منبع سویای فرآوری شده با روشهای مختلف
Subject Areas : CamelE. پرند 1 , ع.ر. وکیلی 2 , م. دانش مسگران 3
1 - Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
2 - Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
3 - Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
Keywords: کنجاله سویا, سیستم DVE/OEB, فرآوری خوراک, ارزشیابی پروتئین, نشخوار کنندگان,
Abstract :
در این پژوهش با استفاده از مدل DVE2010 پیشبینی فراهمی مواد مغذی برای نشخوارکنندگان از کنجاله سویا، کنجاله سویای اکسترود شده و کنجاله سویای فول فت انجام گرفت. نتایج نشان داد کنجاله سویای اکسترود شده، کنجاله سویا و کنجاله سویای فول فت به ترتیب از بیشترین به کمترین محتوی پروتئین غیرقابل تجزیه در شکمبه و قابل هضم و جذب حقیقی در روده باریک (ARUP) را دارا بودند. در محتوی پروتئین میکروبی سنتز شده در شکمبه و قابل هضم و جذب حقیقی در روده باریک (AMCP) بین کنجاله سویای اکسترود و کنجاله سویای فول فت تفاوت معنیداری وجود نداشت ولی میزان پروتئین میکروبی سنتز شده در شکمبه و قابل هضم و جذب حقیقی در روده باریک و پتانسیل سنتز پروتئین میکروبی در شکمبه بر اساس انرژی قابل دسترس (MCPe) برای کنجاله سویا به شکل معنیداری بیشتر از دو تیمار دیگر بود. بیشترین میزان هدر رفت پروتئین آندوژنوسی (ECP) برای کنجاله سویای اکسترود شده مشاهده شد وتفاوت معنیداری در این فراسنجه بین کنجاله سویا و کنجاله سویای فول فت وجود نداشت. کنجاله سویای اکسترود شده، کنجاله سویا و کنجاله سویای فول فت دارای به ترتیب از بیشترین به کمترین محتوی کل پروتئین قابل متابولیسم (DVE) بودند. مدلسازی فراهمی مواد مغذی برای گاوهای شیرده با استفاده از DVE2010 میتواند ابزاری ارزشمند برای سنجش کمی کل پروتئین قابل هضم و جذب در روده باریک از منابع مختلف باشد. این اطلاعات میتواند برای تنظیم جیرهها و کاهش میزان هدررفت نیتروژن و کنترل آلودگی محیط زیست از این طریق مورد استفاده قرار بگیرد.
AOAC. (1990). Official Methods of Analysis. Vol. I. 15th Ed. Association of Official Analytical Chemists, Arlington, VA, USA.
Aufrère J., Graviou D. and Michalet-Doreau B. (1994). Degradation in the rumen of proteins of 2 legumes: soybean meal and field pea. Reprod. Nutr. Dev. 34, 483-490.
Azarfar A., Tamminga S. and Boer H. (2007). Effects of washing procedure, particle size and dilution on the distribution between non-washable, insoluble washable and soluble washable fractions in concentrate ingredients. J. Sci. Food Agric. 87(13), 2390-2398.
Benchaar C. and Moncoulon R. (1993). Effect of extrusion at 195 degrees C on in situ ruminal and intestinal disappearance of the cow amino acids in lupin seeds. Ann. Zootech. 42, 128-129.
Broderick G.A., Wallace R.J. and Ørskov E.R. (1991). Control of rate and extent of protein degradation. Pp. 541-592 in Physiological Aspects of Digestion and Metabolism in Ruminants. T. Suda, Y. Sasaki and R. Kawashima, Eds. Academic Press, London, UK.
Chandler P.T. (1989). Achievement of optimum amino acid balance possible. Feedstuffs. 61(26), 24.
Chen K.J., Jan D.F., Chiou P.W.S. and Yang D.W. (2002). Effects of dietary heat extruded soybean meal and protected fat supplement on the production, blood and ruminal characteristics of Holstein cows. Asian Australas J. Anim. Sci. 15(6), 821-827.
Doiron K., Yu P., McKinnon J. and Christensen D. (2009). Heat-induced protein structure and subfractions in relation to protein degradation kinetics and intestinal availability in dairy cattle. J. Dairy Sci. 92(7), 3319-3330.
Driver L.S., Grummer R.R. and Schultz L.H. (1990). Effects of feeding heat-treated soybeans and niacin to high producing cows in early lactation. J. Dairy Sci. 73(2), 463-469.
Duranti M., Restani P., Poniatowska M. and Cerletti F. (1981). The seed globulins of (Lupinus albus). Phytochemistry. 56, 529-533.
Faldet M.A. and Satter L.D. (1991). Feeding heat-treated full fat soybeans to cows in early lactation. J. Dairy Sci. 74(9), 3047-3054.
Froidmont E., Bonnet M., Oger R., Decruyenaere V., Romnée J., Beckers Y. and Bartiaux-Thill N. (2008). Influence of the grinding level and extrusion on the nutritional value of lupin seed (Lupinus albus) for cattle in the context of the Dutch protein evaluation system. Anim. Feed Sci. Technol. 142(1), 59-73.
Glimp H., Karr M., Little C.O., Woolfolk P., Mitchell G. and Hudson L. (1967). Effect of reducing soybean protein solubility by dry heat on the protein utilization of young lambs. Anim. Sci. 26(4), 858-861.
Goelema J.O., Smits A., Vaessen L.M. and Wemmers A. (1999). Effects of pressure toasting, expander treatment and pelleting on in vitro and in situ parameters of protein and starch in a mixture of broken peas, lupins and faba beans. J. Anim. Feed Sci. Technol. 78(1), 109-126.
Goelema J. and Tamminga S. (1994). Feed Processing as a Mean to Improve Feed Utilization. WageningenUniversityPress, Netherlands.
Holum J.R. (1982). Fundamentals of General, Organic and Biological Chemistry. Published by John Wiley and Sons, New York.
Hurrell R. F. and Finot P. A. (1985). Effects of food processing on protein digestibility and amino acid availability. Pp. 233-246 in Digestibility and Amino Acid Availability in Cereals and Oilseeds. J.W. Finley and D.T. Hopkins, Eds. American Association of Cereal Chemists Inc., Saint Paul,Minnesota, USA.
Hvelplund T. and Madsen J. (1993). Protein systems for ruminants. Icelandic Agric. Sci. 7, 21-36.
Kamalak A., Canbolat O., Gurbuz Y. and Ozay O. (2005). In situ ruminal dry matter and crude protein degradability of plant-and animal-derived protein sources in southern Turkey. Small Ruminant. Res. 58(2), 135-141.
Kim Y.K., Shingoethe D.J., Casper D.P. and Ludens F.C. (1993). Supplemental dietary fat from extruded soybeans and calcium soaps of fatty acids for lactating dairy cows. J. Dairy Sci. 76, 197-204.
Lampart-Szczapa E., Konieczny P., Nogala-Kałucka M., Walczak S., KossowskaI. and Malinowska M. (2006). Some functional properties of lupin proteins modified by lactic fermentation and extrusion. Food Chem. 96, 290-296.
Lin C. and Kung L. (1999). Heat treated soybeans and soybean meal in ruminant nutrition. Pp. 1-18 in Proc. Tech. Bull. Am. Soybean Assoc. United Soybean Board. Singapure.
Ljøkjel K., Harstad O.M. and Skrede A. (2000). Effect of heat treatment of soybean meal and fish meal on amino acid digestibility in mink and dairy cows. Anim. Feed Sci. Technol. 84(1), 83-95.
Lykos T. and Varga G.A. (1995). Effects of processing method on degradation characteristics of protein and carbohydrate sources in situ. J. Dairy Sci. 78, 1789-1801.
Mahadevan S., Erfle J. and Sauer F. (1980). Degradation of soluble and insoluble proteins by Bacteroides amylophilus protease and by rumen microorganisms. Anim. Sci. 50(4), 723-728.
Melcion J.P. and Van der Poel A.F.B. (1993). Process technology and antinutritional factors: principles, adequacy and process optimization. Pp. 419-434 in Recent Advances of Research in Antinutritional Factors in Legume Seeds. A.F.B. Van der Poel, J. Huisman and H.S. Saini, Eds. EAAP Publication, Wageningen, Netherlands.
Nasri M. France J. Danesh Mesgaran M. and Kebreab E. (2008). Effect of heat processing on ruminal degradability and intestinal disappearance of nitrogen and amino acids in Iranian whole soybean. Livest. Sci. 113(1), 43-51.
Nishimuta J., Ely D. and Boling J. (1974). Ruminal bypass of dietary soybean protein treated with heat, formalin and tannic acid. J. Anim. Sci. 39(5), 952-957.
Nowak W., Michalak S. and S. Wylegala. (2005). In situ evaluation of ruminal degradability and intestinal digestibility of extruded soybeans. Czech J. Anim. Sci. 50, 281-287.
NRC. (1989). Nutrient Requirements of Dairy Cattle. 6thEd.NationalAcademy Press, Washington, DC, USA.
NRC. (2001). Nutrient Requirements of Dairy Cattle. 7thEd.NationalAcademy Press, Washington, DC, USA.
Ørskov E. and McDonaldI. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92(02), 499-503.
Sadeghi A. and Shawrang P. (2006). Effects of microwave irradiation on ruminal degradability and in vitro digestibility of canola meal. Anim. Feed Sci. Technol. 127, 45-54.
SAS Institute. (2011). SAS®/STAT Software, Release 9.3. SAS Institute, Inc., Cary, NC. USA.
Schingoethe D.J. (1996). Balancing the amino acid needs of the dairy cow. Anim. Feed Sci. Technol. 60(3), 153-160.
Stern M.O., Santos K.A. and Satter L.D. (1985). Protein degradation in rumen and amino acid absorption in small intestine of lactating dairy cattle fed heat-treated whole soybeans. J. Dairy Sci. 68(1), 45-56.
Tagari H., AscarelliI. and Bondi A. (1962). The influence of heating on the nutritive value of soya-bean meal for ruminants. Br. J. Nutr. 16(01), 237-243.
Tamminga S., Brandsma G. Dijkstra J., van Duinkerken G., van Vuuren A. and Blok M.C. (2007). Protein Evaluation for Ruminants: The DVE/OEB-System. WageningenUniversityPress, Netherlands.
Tamminga S., Vanstraalen W.M., Subnel A.P.J., Meijer R.G.M., Steg A., Wever C.J.G. and Blok M.C. (1994). The Dutch Protein Evaluation system-the DVE/OEB-system. Livest. Prod. Sci. 40(2), 139-155.
Thomas C. (2004). Feed into Milk: A New Applied Feeding System for Dairy Cows. NottinghamUniversityPress, UK.
Van Barneveld R. (1999). Understanding the nutritional chemistry of lupin (Lupinus spp.) seed to improve livestock production efficiency. Nutr. Res. Rev. 12, 203-230.
Van Duinkerken G., Blok M., Bannink A., Cone J., Dijkstra J., Van Vuuren A. and Tamminga S. (2011). Update of the Dutch protein evaluation system for ruminants: the DVE/OEB2010 system. J. Agric. Sci. 149(03), 351-367.
Van Soest P., Robertson J. and Lewis B. (1991). Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597.
Volden H. and Nielsen N.I. (2011). Energy and metabolizable protein supply. Pp. 81-84 in NorFor-The Nordic Feed Evaluation System. H. Volden, Eds.WageningenUniversityPress, Netherlands.
Yu P., Christensen D. and McKinnon J. (2003a). Comparison of the NRC-2001 model with the Dutch system (DVE/OEB) in the prediction of nutrient supply to dairy cows from forages. J. Dairy Sci. 86(6), 2178-2192.
Yu P., Goelema J.O. and Tamminga S. (2000). Determination of optimal conditions of pressure toasting on hors beans for dairy feed industry, by the DVE/OEB model. Anim. Feed Sci. Technol. 86, 165-176.
Yu P., Goelema J., Leury B., Tamminga S. and Egan A. (2002a). An analysis of the nutritive value of heat processed legume seeds for animal production using the DVE/OEB model: a review. Anim. Feed Sci. Technol. 99(1), 141-176.
Yu P., Goelema J., Leury B., Tamminga S. and Egan A. (2002b). An analysis of the nutritive value of heat processed legume seeds for animal production using the DVE/OEB model: a review. Anim. Feed Sci. Technol. 99(1), 141-176.
Yu P., Goelema J., Leury B., Tamminga S. and Egan A. (2002c). An analysis of the nutritive value of heat processed legume seeds for animal production using the DVE/OEB model: a review. Anim. Feed Sci. Technol. 99(1), 141-176.
Yu P., Leury B., Sprague M. and Egan A. (2001). Effect of the DVE and OEB value changes of grain legumes (lupin and faba beans) after roasting on the performance of lambs fed a roughage-based diet. Anim. Feed Sci. Technol. 94(1), 89-102.
Yu P., Meier J., Christensen D., Rossnagel B. and McKinnon J. (2003b). Using the NRC-2001 model and the DVE/OEB system to evaluate nutritive values of Harrington (malting-type) and Valier (feed-type) barley for ruminants. Anim. Feed Sci. Technol. 107(1), 45-60.
Yu P., Egan A.R. and Leury B.J. (1999). Protein evaluation of dry roasted whole faba bean and lupin seeds by the new Dutch protein evaluation system: the DVE/OEB system. Asian-Australian J. Anim. Sci. 12, 871-880.