Rumen Degradability and Model Prediction of Nutrient Supply to Ruminants from Different Processed Soybean Meals
الموضوعات :E. پرند 1 , ع.ر. وکیلی 2 , م. دانش مسگران 3
1 - Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
2 - Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
3 - Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
الکلمات المفتاحية: soybean meal, ruminants, DVE/OEB system, feed processing, protein evaluation,
ملخص المقالة :
DVE2010 system was used for model prediction of nutrient supply to ruminants from soy bean meal (SBM), extruded soy bean meal (SBE) and full-fat soybean meal (FSBM). Extruded soy bean meal had the highest truly absorbed rumen undegraded protein in the small intestine (ARUP) followed by SBM and FSBM. There was no significant difference between SBE and FSBM in the case of truly absorbed rumen synthesized microbial protein (AMCP) in the small intestine and largest possible microbial protein synthesis, based on the available amount of energy at rumen level (MCPe) but SBM had a higher AMCP and MCPe compared to the other soy bean meal sources. Endogenous protein loss (ECP) was highest in SBE while there was no significant difference between SBM and FSBM in ECP. Extruded soy bean meal had highest total metabolizable protein(DVE) followed by SBM and FSBM. Modeling nutrient supply to dairy cows using DVE2010 system can offer valuable quantitative data on total amount of true protein digested in the small intestine from different sources which may be used to formulate diets to lower hazardous consequences of nitrogen leakage to environment.
AOAC. (1990). Official Methods of Analysis. Vol. I. 15th Ed. Association of Official Analytical Chemists, Arlington, VA, USA.
Aufrère J., Graviou D. and Michalet-Doreau B. (1994). Degradation in the rumen of proteins of 2 legumes: soybean meal and field pea. Reprod. Nutr. Dev. 34, 483-490.
Azarfar A., Tamminga S. and Boer H. (2007). Effects of washing procedure, particle size and dilution on the distribution between non-washable, insoluble washable and soluble washable fractions in concentrate ingredients. J. Sci. Food Agric. 87(13), 2390-2398.
Benchaar C. and Moncoulon R. (1993). Effect of extrusion at 195 degrees C on in situ ruminal and intestinal disappearance of the cow amino acids in lupin seeds. Ann. Zootech. 42, 128-129.
Broderick G.A., Wallace R.J. and Ørskov E.R. (1991). Control of rate and extent of protein degradation. Pp. 541-592 in Physiological Aspects of Digestion and Metabolism in Ruminants. T. Suda, Y. Sasaki and R. Kawashima, Eds. Academic Press, London, UK.
Chandler P.T. (1989). Achievement of optimum amino acid balance possible. Feedstuffs. 61(26), 24.
Chen K.J., Jan D.F., Chiou P.W.S. and Yang D.W. (2002). Effects of dietary heat extruded soybean meal and protected fat supplement on the production, blood and ruminal characteristics of Holstein cows. Asian Australas J. Anim. Sci. 15(6), 821-827.
Doiron K., Yu P., McKinnon J. and Christensen D. (2009). Heat-induced protein structure and subfractions in relation to protein degradation kinetics and intestinal availability in dairy cattle. J. Dairy Sci. 92(7), 3319-3330.
Driver L.S., Grummer R.R. and Schultz L.H. (1990). Effects of feeding heat-treated soybeans and niacin to high producing cows in early lactation. J. Dairy Sci. 73(2), 463-469.
Duranti M., Restani P., Poniatowska M. and Cerletti F. (1981). The seed globulins of (Lupinus albus). Phytochemistry. 56, 529-533.
Faldet M.A. and Satter L.D. (1991). Feeding heat-treated full fat soybeans to cows in early lactation. J. Dairy Sci. 74(9), 3047-3054.
Froidmont E., Bonnet M., Oger R., Decruyenaere V., Romnée J., Beckers Y. and Bartiaux-Thill N. (2008). Influence of the grinding level and extrusion on the nutritional value of lupin seed (Lupinus albus) for cattle in the context of the Dutch protein evaluation system. Anim. Feed Sci. Technol. 142(1), 59-73.
Glimp H., Karr M., Little C.O., Woolfolk P., Mitchell G. and Hudson L. (1967). Effect of reducing soybean protein solubility by dry heat on the protein utilization of young lambs. Anim. Sci. 26(4), 858-861.
Goelema J.O., Smits A., Vaessen L.M. and Wemmers A. (1999). Effects of pressure toasting, expander treatment and pelleting on in vitro and in situ parameters of protein and starch in a mixture of broken peas, lupins and faba beans. J. Anim. Feed Sci. Technol. 78(1), 109-126.
Goelema J. and Tamminga S. (1994). Feed Processing as a Mean to Improve Feed Utilization. WageningenUniversityPress, Netherlands.
Holum J.R. (1982). Fundamentals of General, Organic and Biological Chemistry. Published by John Wiley and Sons, New York.
Hurrell R. F. and Finot P. A. (1985). Effects of food processing on protein digestibility and amino acid availability. Pp. 233-246 in Digestibility and Amino Acid Availability in Cereals and Oilseeds. J.W. Finley and D.T. Hopkins, Eds. American Association of Cereal Chemists Inc., Saint Paul,Minnesota, USA.
Hvelplund T. and Madsen J. (1993). Protein systems for ruminants. Icelandic Agric. Sci. 7, 21-36.
Kamalak A., Canbolat O., Gurbuz Y. and Ozay O. (2005). In situ ruminal dry matter and crude protein degradability of plant-and animal-derived protein sources in southern Turkey. Small Ruminant. Res. 58(2), 135-141.
Kim Y.K., Shingoethe D.J., Casper D.P. and Ludens F.C. (1993). Supplemental dietary fat from extruded soybeans and calcium soaps of fatty acids for lactating dairy cows. J. Dairy Sci. 76, 197-204.
Lampart-Szczapa E., Konieczny P., Nogala-Kałucka M., Walczak S., KossowskaI. and Malinowska M. (2006). Some functional properties of lupin proteins modified by lactic fermentation and extrusion. Food Chem. 96, 290-296.
Lin C. and Kung L. (1999). Heat treated soybeans and soybean meal in ruminant nutrition. Pp. 1-18 in Proc. Tech. Bull. Am. Soybean Assoc. United Soybean Board. Singapure.
Ljøkjel K., Harstad O.M. and Skrede A. (2000). Effect of heat treatment of soybean meal and fish meal on amino acid digestibility in mink and dairy cows. Anim. Feed Sci. Technol. 84(1), 83-95.
Lykos T. and Varga G.A. (1995). Effects of processing method on degradation characteristics of protein and carbohydrate sources in situ. J. Dairy Sci. 78, 1789-1801.
Mahadevan S., Erfle J. and Sauer F. (1980). Degradation of soluble and insoluble proteins by Bacteroides amylophilus protease and by rumen microorganisms. Anim. Sci. 50(4), 723-728.
Melcion J.P. and Van der Poel A.F.B. (1993). Process technology and antinutritional factors: principles, adequacy and process optimization. Pp. 419-434 in Recent Advances of Research in Antinutritional Factors in Legume Seeds. A.F.B. Van der Poel, J. Huisman and H.S. Saini, Eds. EAAP Publication, Wageningen, Netherlands.
Nasri M. France J. Danesh Mesgaran M. and Kebreab E. (2008). Effect of heat processing on ruminal degradability and intestinal disappearance of nitrogen and amino acids in Iranian whole soybean. Livest. Sci. 113(1), 43-51.
Nishimuta J., Ely D. and Boling J. (1974). Ruminal bypass of dietary soybean protein treated with heat, formalin and tannic acid. J. Anim. Sci. 39(5), 952-957.
Nowak W., Michalak S. and S. Wylegala. (2005). In situ evaluation of ruminal degradability and intestinal digestibility of extruded soybeans. Czech J. Anim. Sci. 50, 281-287.
NRC. (1989). Nutrient Requirements of Dairy Cattle. 6thEd.NationalAcademy Press, Washington, DC, USA.
NRC. (2001). Nutrient Requirements of Dairy Cattle. 7thEd.NationalAcademy Press, Washington, DC, USA.
Ørskov E. and McDonaldI. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92(02), 499-503.
Sadeghi A. and Shawrang P. (2006). Effects of microwave irradiation on ruminal degradability and in vitro digestibility of canola meal. Anim. Feed Sci. Technol. 127, 45-54.
SAS Institute. (2011). SAS®/STAT Software, Release 9.3. SAS Institute, Inc., Cary, NC. USA.
Schingoethe D.J. (1996). Balancing the amino acid needs of the dairy cow. Anim. Feed Sci. Technol. 60(3), 153-160.
Stern M.O., Santos K.A. and Satter L.D. (1985). Protein degradation in rumen and amino acid absorption in small intestine of lactating dairy cattle fed heat-treated whole soybeans. J. Dairy Sci. 68(1), 45-56.
Tagari H., AscarelliI. and Bondi A. (1962). The influence of heating on the nutritive value of soya-bean meal for ruminants. Br. J. Nutr. 16(01), 237-243.
Tamminga S., Brandsma G. Dijkstra J., van Duinkerken G., van Vuuren A. and Blok M.C. (2007). Protein Evaluation for Ruminants: The DVE/OEB-System. WageningenUniversityPress, Netherlands.
Tamminga S., Vanstraalen W.M., Subnel A.P.J., Meijer R.G.M., Steg A., Wever C.J.G. and Blok M.C. (1994). The Dutch Protein Evaluation system-the DVE/OEB-system. Livest. Prod. Sci. 40(2), 139-155.
Thomas C. (2004). Feed into Milk: A New Applied Feeding System for Dairy Cows. NottinghamUniversityPress, UK.
Van Barneveld R. (1999). Understanding the nutritional chemistry of lupin (Lupinus spp.) seed to improve livestock production efficiency. Nutr. Res. Rev. 12, 203-230.
Van Duinkerken G., Blok M., Bannink A., Cone J., Dijkstra J., Van Vuuren A. and Tamminga S. (2011). Update of the Dutch protein evaluation system for ruminants: the DVE/OEB2010 system. J. Agric. Sci. 149(03), 351-367.
Van Soest P., Robertson J. and Lewis B. (1991). Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597.
Volden H. and Nielsen N.I. (2011). Energy and metabolizable protein supply. Pp. 81-84 in NorFor-The Nordic Feed Evaluation System. H. Volden, Eds.WageningenUniversityPress, Netherlands.
Yu P., Christensen D. and McKinnon J. (2003a). Comparison of the NRC-2001 model with the Dutch system (DVE/OEB) in the prediction of nutrient supply to dairy cows from forages. J. Dairy Sci. 86(6), 2178-2192.
Yu P., Goelema J.O. and Tamminga S. (2000). Determination of optimal conditions of pressure toasting on hors beans for dairy feed industry, by the DVE/OEB model. Anim. Feed Sci. Technol. 86, 165-176.
Yu P., Goelema J., Leury B., Tamminga S. and Egan A. (2002a). An analysis of the nutritive value of heat processed legume seeds for animal production using the DVE/OEB model: a review. Anim. Feed Sci. Technol. 99(1), 141-176.
Yu P., Goelema J., Leury B., Tamminga S. and Egan A. (2002b). An analysis of the nutritive value of heat processed legume seeds for animal production using the DVE/OEB model: a review. Anim. Feed Sci. Technol. 99(1), 141-176.
Yu P., Goelema J., Leury B., Tamminga S. and Egan A. (2002c). An analysis of the nutritive value of heat processed legume seeds for animal production using the DVE/OEB model: a review. Anim. Feed Sci. Technol. 99(1), 141-176.
Yu P., Leury B., Sprague M. and Egan A. (2001). Effect of the DVE and OEB value changes of grain legumes (lupin and faba beans) after roasting on the performance of lambs fed a roughage-based diet. Anim. Feed Sci. Technol. 94(1), 89-102.
Yu P., Meier J., Christensen D., Rossnagel B. and McKinnon J. (2003b). Using the NRC-2001 model and the DVE/OEB system to evaluate nutritive values of Harrington (malting-type) and Valier (feed-type) barley for ruminants. Anim. Feed Sci. Technol. 107(1), 45-60.
Yu P., Egan A.R. and Leury B.J. (1999). Protein evaluation of dry roasted whole faba bean and lupin seeds by the new Dutch protein evaluation system: the DVE/OEB system. Asian-Australian J. Anim. Sci. 12, 871-880.