بهبود ارزش تغذیهای کنجاله آفتابگردان به وسیله پرتوتابی با تابش الکترون و اشعه گاما
Subject Areas : CamelF. Ghanbari 1 , T. Ghoorchi 2 , P. Shawrang 3 , H. Mansouri 4 , N.M. Torbati-Nejad 5
1 - Department of Animal Science, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Iran
2 - Department of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
3 - Department of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
4 - Animal Science Research Institute, Karaj, Iran
5 - Department of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
Keywords: قابلیت هضم, اشعه گاما, کینتیک تجزیه, تابش الکترون, کنجاله آفتابگردان,
Abstract :
این پژوهش به منظور مقایسه تأثیر تیمارهای پرتو الکترون و اشعه گاما در دزهای 25، 50 و 75 کیلوگری، بر کینتیک تجزیه شکمبهای و قابلیت هضم برون تنی کنجاله آفتابگردان انجام گرفت. پرتوهای یونساز الکترون و گاما اثر معنیداری بر فراسنجههای تجزیه پذیری ماده خشک، پروتئین خام و اسیدهای آمینه کنجاله آفتابگردان داشتند (05/0P<). تجزیه پذیری مؤثر شکمبهای ماده خشک در کنجاله آفتابگردان پرتوتابی شده با تابش الکترون و اشعه گاما، کمتر از کنجاله آفتابگردان پرتوتابی نشده بود (05/0P<). تیمار پرتو گاما در دز 75 کیلوگری، تجزیه پذیری مؤثر شکمبهای پروتئین خام را در مقایسه با شاهد کاهش داد (05/0P<). تجزیه پذیری مؤثر شکمبهای پروتئین خام به وسیله تابش الکترون تحت تأثیر قرار نگرفت (05/0P>). عملآوری پرتوتابی باعث کاهش تجزیه اسیدهای آمینه بعد از 16 ساعت انکوباسیون شکمبهای شد (05/0P<). تأثیر پرتو گاما در کاهش تجزیه پذیری شکمبهای اسیدهای آمینه بیشتر از تابش الکترون بود (05/0P<). قابلیت هضم برونتنی پروتئین خام در کنجاله آفتاب عملآوری شده با تابش الکترون و اشعه گاما بهبود یافت (05/0P<). این پژوهش، بر پایه مطالعات برونتنی و تکنیک کیسههای نایلونی، نشان داد که عملآوری با تابش الکترون و اشعه گاما میتواند به عنوان یک روش مؤثر برای بهبود ارزش تغذیهای کنجاله آفتابگردان مورد استفاده قرار گیرد.
Abu J.O., Muller K., Duodu K.G. and Minnaar A. (2006). Gamma irradiation of cowpea (Vignaunguiculata) flours and pastes: effects on functional, thermal and molecular properties of isolated proteins. Food Chem. 95, 138-147.
Al-Masri M. (1999). In vitro digestible energy of some agricultural residues as influenced by gamma irradiation and sodium hydroxide. Appl. Radiat. Isot. 50, 295-301.
AOAC. (1995). Official Methods of Analysis, 15th Ed. Association of Official Analytical Chemists, Arlington, VA, USA.
Bhat R., Sridhar K.R., Young C.C., Bhagwath A.A. and Ganesh S. (2008). Composition and functional properties of raw and electron beam-irradiated Mucunapruriens seeds. Int. J. Food Sci. Technol. 43, 1338-1351.
Choi J.I., Kim J.H., Lee K.W., Song B.S., Yoon Y., Byun M.W. and Lee J.W. (2009). Comparison of gamma ray and electron beam irradiations on the degradation of carboxymethylcellulose. Korean J. Chem. Eng. 26, 1825-1828.
Cies´la K., Roos Y. and Gluszewski W. (2000). Denaturation processes in gamma irradiated proteins studied by differential scanning calorimetry. Radiat. Phys. Chem. 58, 233-243.
Ebrahimi S.R., Nikkhah A., Sadeghi A.A. and Raisali G. (2009). Chemical composition, secondry compounds, ruminal degradation and in vitro crude protein digestibility of gamma irradiated canola seed. Anim. Feed Sci. Technol. 151, 184-193.
Fombang E.N., Taylor J.R.N., Mbofung C.M.F. and Minnaar A. (2005). Use of ɣ-irradiation to alleviate the protein poor diges-tibility of sorghum porridge. Food Chem. 91, 695-703.
Forooshani M.J. (2010). Effect of electron beam irradiation on dry matter and crude protein degradability of soybean and canola meal and performance of lactating Holstein cows. MS Thesis. Isfahan Univ., Iran.
Gaber M.H. (2005). Effect of ɣ-irradiation on the molecular properties of bovine serum albumin. J. Biosci. Bioeng. 2, 203-206.
Ghanbari F., Ghoorchi T., Shawrang P., Mansouri H. and Torbati-Nejad N.M. (2012). Comparison of electron beam and gamma ray irradiations effects on ruminal crude protein and amino acid degradation kinetics, and in vitro digestibility of cottonseed meal. Radiat. Phys. Chem. 81, 672-678.
Holm N.W. and Berry R.J. (1970). Manual on Radiation Dosimetry. Dekker, New York, USA.
Lacroix M., Le T.C., Ouattara B., Yu H., Letendre M. and Sabato S.F. (2002). Use of ɣ-irradiation to produce films from whey, casein and soya proteins: structure and functionals characteristics. Radiat. Phys. Chem. 63, 827-832.
Lee S.L., Lee M.S. and Song K.B. (2005). Effect of gamma-irradiation on the physicochemical properties of gluten films. Food Chem. 92, 621-625.
Mani V. and Chandra P. (2003). Effect of feeding irradiated soybean on nutrient intake, gidestibility and N-balance in goats. Small Rum. Res. 48, 77-81.
Molina Alcaide E., Yanez Ruiz D.R., Moumen A. and Martin Garcia A.I. (2003). Ruminal degradability and in vitro intestinal digestibility of sunflower meal and in vitro digestibility of olive by-products supplemented with urea or sunflower meal. Anim. Feed Sci. Technol. 110, 3-15.
Moshtaghi Nia S.A. and Ingals J.R. (1995). Influence of heat treatment on ruminal and intestinal disappearance of amnio acids from canola meal. J. Dairy Sci. 78, 1552-1560.
Mostafa M.M. (1987). Nutritional aspects of thermal and irradiation processing of peanut kernels and their oil. Food Chem. 26, 31-45.
Murray R.K., Granner D.K., Mayes P.A. and Rodwell V.W. (2003). Harper’s Biochemistry. McGraw-Hill, New York, NY, USA.
NRC. (2001). Nutrient Requirements of Dairy Cattle. 7th Ed. National Academy Press, Washington, DC, USA.
Orskov E.R. and McDonald I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92, 499-503.
Salamatdoust Nobar R., Chamani M., Sadeghi A.A. and Aghazadeh A.M. (2009). Determination of degradability of treated soybean meal and its protein fractions. African J. Biotechnol. 8, 98-102.
SAS Institute. (2003). SAS®/STAT Software, Release 9.1. SAS Institute, Inc., Cary, NC. USA.
Shawrang P. (2006). An investigation on the effects of gamma irradiation on ruminal and postruminal disappearance of feedstuffs using nylon bag and SDS-PAGE techniques. Ph D. Thesis. Tehran Univ., Tehran, Iran.
Shawrang P., Nikkhah A., Zare-Shahneh A., Sadeghi A.A., Raisali G. and Moradi-Shahrbabak M.M. (2007). Effects of gamma irradiation on protein degradation of soybean meal in the rumen. Anim. Feed Sci. Technol. 134, 140-151.
Shawrang P., Nikkhah A., Zare-Shahneh A., Sadeghi A.A., Raisali G. and Moradi-Shahrbabak M.M. (2008). Effects of gamma irradiation on chemical composition and ruminal protein degradation of canola meal. Radiat. Phys. Chem. 77, 918-922.
Song H.P., Kim B., Jung S., Choe J.H., Yun H., Kim Y.J. and Cheorun J. (2009). Effect of gamma and electron beam irradiation on the survival of pathogens inoculated into salted, seasoned, and fermented oyster. LWT-Food Sci. Technol. 42, 1320-1324.
Taghinejad-Roudbaneh M. (2008). Study of the effects of physical processing (gamma irradiation, microwaving and roasting) on protein degradability of soybean and cottonseed. MS Thesis. Islamic Azad Univ., Tehran, Iran.
Taghinejad-Roudbaneh M., Ebrahimi S.R., Azizi S. and Shawrang P. (2010). Effect of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal. Radiat. Phys. Chem. 79, 1264-1269.
Tilly J.M.A. and Terry R.A. (1963). A two stage technique for the in vitro digestion of forage crops.J. Br. Grassl. Soc. 18, 104-111.
Tuncer S.D. and Sacakli P. (2003). Rumen degradability characteristics of xylose treated canola and soybean meals. Anim. Feed Sci. Technol. 107, 211-218.
Yoruk M.A., Aksu T., Gul M. and Bolat D. (2006). The effect of soybean meal treated with formaldehyde on amount of protein in the rumen and absorption of amino acid from small intestines. Turkish J. Vet. Anim. Sci. 30, 457-463.