Utilizing Firefly Algorithm-Optimized ANFIS for Estimating Engine Torque and Emissions Based on Fuel Use and Speed
Subject Areas : Fuzzy Optimization and Modeling Journal
1 -
Keywords: Firefly Algorithm, Machine Learning, Optimization, ANFIS, Engine Torque,
Abstract :
In this study, a method for predicting engine torque and emissions considering fuel consumption and engine speed parameters is presented. An adaptive neuro-fuzzy inference system (ANFIS) optimized with the Firefly algorithm is used. This strategy uses the global optimization capabilities of the Firefly algorithm, an algorithm inspired by biological phenomena, in combination with the ability of ANFIS to describe complicated non-linear relationships between inputs and outputs. The ANFIS system was trained on a dataset containing various engine operating conditions, with the Firefly algorithm fine-tuning the model parameters to ensure optimal effectiveness. The input parameters of the model consisted of fuel quantity and engine speed, while engine torque and nitrogen oxide emissions formed the output parameters. The results obtained showed high accuracy in predicting engine torque and emissions, confirming the effectiveness of the Firefly-optimized ANFIS model. This model makes an important contribution to engine performance monitoring and emissions management. It provides a powerful tool for real-time regulation and has the potential to improve fuel efficiency while reducing environmental impact. Future research efforts should extend the applicability of this model to a wider range of engine shapes and operating conditions.
1. Armaghani, D. J. & Asteris, P. G. (2021). A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength. In Neural Computing and Applications (Vol. 33, Issue 9). Springer London.
2. Barak, S. & Sadegh, S. S. (2016). Forecasting energy consumption using ensemble ARIMA-ANFIS hybrid algorithm. International Journal of Electrical Power and Energy Systems, 82, 92-104.
3. Basser, H., Karami, H., Shamshirband, S., Akib, S., Amirmojahedi, M., Ahmad, R., Jahangirzadeh, A. & Javidnia, H. (2015). Hybrid ANFIS-PSO approach for predicting optimum parameters of a protective spur dike. Applied Soft Computing, 30, 642-649.
4. Behrentz, E., Ling, R., Rieger, P. & Winer, A. M. (2004). Measurements of nitrous oxide emissions from light-duty motor vehicles: a pilot study. Atmospheric Environment, 38(26), 4291-4303.
5. Biau, D. J. (2011). In brief: Standard deviation and standard error. Clinical Orthopaedics and Related Research, 469(9), 2661–2664.
6. Cai, W., Wen, X., Li, C., Shao, J. & Xu, J. (2023). Predicting the energy consumption in buildings using the optimized support vector regression model. Energy, 273.
7. Chai, T. & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE) -Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250.
8. Chicco, D., Warrens, M. J. & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peer journal Computer Science, 7, 1–24.
9. D’Ambrosio, S., Finesso, R., Hardy, G., Manelli, A., Mancarella, A., Marello, O. & Mittica, A. (2021). Model-Based Control of Torque and Nitrogen Oxide Emissions in a Euro VI 3.0 L Diesel Engine through Rapid Prototyping. Energies 2021, Vol. 14, Page 1107, 14(4), 1107.
10. de Almeida, A. T. & Fonseca, P. (1997). Energy Efficient Motor Technologies. Energy Efficiency Improvements in Electric Motors and Drives, 1–18.
11. Dirik, M. (2022a). Prediction of NOx emissions from gas turbines of a combined cycle power plant using an ANFIS model optimized by GA. Fuel, 321, 124037.
12. Dirik, M. (2022b). Prediction of NOx emissions from gas turbines of a combined cycle power plant using an ANFIS model optimized by GA. Fuel, 321.
13. DİRİK, M. & GÜL, M. (2021). Dynamic Optimal ANFIS Parameters Tuning with Particle Swarm Optimization. European Journal of Science and Technology, 28, 1083–1092.
14. Ganesan, P., Rajakarunakaran, S., Thirugnanasambandam, M. & Devaraj, D. (2015). Artificial neural network model to predict the diesel electric generator performance and exhaust emissions. Energy, 83, 115–124.
15. Milan, S. G., Roozbahani, A., Azar, N. A., & Javadi, S. (2021). Development of adaptive neuro fuzzy inference system–evolutionary algorithms hybrid models (ANFIS-EA) for prediction of optimal groundwater exploitation. Journal of hydrology, 598, 126258.
16. Jang, J. S. R. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665–685.
17. Kamarian, S., Yas, M. H., Pourasghar, A. & Daghagh, M. (2014). Application of firefly algorithm and ANFIS for optimisation of functionally graded beams. Journal of Experimental and Theoretical Artificial Intelligence, 26(2), 197–209.
18. Kardani, N., Bardhan, A., Kim, D., Samui, P. & Zhou, A. (2021). Modelling the energy performance of residential buildings using advanced computational frameworks based on RVM, GMDH, ANFIS-BBO and ANFIS-IPSO. Journal of Building Engineering, 35(December 2020), 102105.
19. Korade, N. B. & Zuber, D. M. (2023). BOOST STOCK FORECASTING ACCURACY USING THE MODIFIED FIREFLY ALGORITHM AND MULTICHANNEL CONVOLUTIONAL NEURAL NETWORK. Journal of Theoretical and Applied Information Technology, 15(7).
20. Labeckas, G. & Slavinskas, S. (2006). The effect of rapeseed oil methyl ester on direct injection Diesel engine performance and exhaust emissions. Energy Conversion and Management, 47(13–14), 1954–1967.
21. McDonald, B. C., Dallmann, T. R., Martin, E. W. & Harley, R. A. (2012). Long-term trends in nitrogen oxide emissions from motor vehicles at national, state, and air basin scales. Journal of Geophysical Research: Atmospheres, 117(D21), 0–18.
22. Melin, P., Sánchez, D., Monica, J. C. & Castillo, O. (2023). Optimization using the firefly algorithm of ensemble neural networks with type-2 fuzzy integration for COVID-19 time series prediction. Soft Computing, 27(6), 3245–3282.
23. Moghadam, R. G., Izadbakhsh, M. A., Yosefvand, F. & Shabanlou, S. (2019). Optimization of ANFIS network using firefly algorithm for simulating discharge coefficient of side orifices. Applied Water Science, 9(4).
24. Mostafaei, M. (2018). ANFIS models for prediction of biodiesel fuels cetane number using desirability function. Fuel, 216, 665–672.
25. Mostafaei, M., Javadikia, H. & Naderloo, L. (2016). Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: Comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). Energy, 115, 626–636.
26. Oladipo, S., Sun, Y. & Adeleke, O. (2023). An Improved Particle Swarm Optimization and Adaptive Neuro-Fuzzy Inference System for Predicting the Energy Consumption of University Residence. International Transactions on Electrical Energy Systems, 2023.
27. Rajak, U., Nashine, P., Verma, T. N. & Pugazhendhi, A. (2019). Performance, combustion and emission analysis of microalgae Spirulina in a common rail direct injection diesel engine. Fuel, 255, 115855.
28. Rajeshwari, J. & Sughasiny, M. (2022). Dermatology disease prediction based on firefly optimization of ANFIS classifier. AIMS Electronics and Electrical Engineering, 6(1), 61–80.
29. Rakopoulos, D. C, Giakoumis, E. G., Dimaratos, A. M. & Kyritsis, D. C. (2010). Effects of butanol–diesel fuel blends on the performance and emissions of a high-speed DI diesel engine. Energy Conversion and Management, 51(10), 1989–1997.
30. Sahoo, B. B., Sahoo, N. & Saha, U. K. (2009). Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines—A critical review. Renewable and Sustainable Energy Reviews, 13(6–7), 1151–1184.
31. Sayin, C., Ertunc, H. M., Hosoz, M., Kilicaslan, I. & Canakci, M. (2007). Performance and exhaust emissions of a gasoline engine using artificial neural network. Applied Thermal Engineering, 27(1), 46–54.
32. Shaban, W. M., Elbaz, K., Amin, M. & Ashour, A. G. (2022). A new systematic firefly algorithm for forecasting the durability of reinforced recycled aggregate concrete. Frontiers of Structural and Civil Engineering, 16(3), 329–346.
33. Shorter, J. H., Herndon, S., Zahniser, M. S., Nelson, D. D., Wormhoudt, J., Demerjian, K. L. & Kolb, C. E. (2005). Real-Time Measurements of Nitrogen Oxide Emissions from In-Use New York City Transit Buses Using a Chase Vehicle. Environmental Science and Technology, 39(20), 7991–8000.
34. Streiner, D. L. (1996). Maintaining standards: differences between the standard deviation and standard error, and when to use each. The Canadian Journal of Psychiatry, 41(8), 498-502.
35. Thompson, G. J., Atkinson, C. M., Clark, N. N., Long, T. W., & Hanzevack, E. (2000). Neural network modelling of the emissions and performance of a heavy-duty diesel engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 214(2), 111-126.
36. Tschanz, F., Amstutz, A., Onder, C. H. & Guzzella, L. (2013). Feedback control of particulate matter and nitrogen oxide emissions in diesel engines. Control Engineering Practice, 21(12), 1809–1820.
37. Wang, J. S. & Ning, C. X. (2015). ANFIS based time series prediction method of bank cash flow optimized by adaptive population activity PSO algorithm. Information (Switzerland), 6(3), 300–313.
38. Wik, C. (2010). Reducing medium-speed engine emissions. Journal of Marine Engineering & Technology, 9(2), 37-44.
39. Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Luniver press.
40. Yuan, Z., Shi, X., Jiang, D., Liang, Y., Mi, J., & Fan, H. (2022). Data-based engine torque and NOx raw emission prediction. Energies, 15(12), 4346.
41. Zanganeh, M. (2020). Improvement of the ANFIS-based wave predictor models by the Particle Swarm Optimization. Journal of Ocean Engineering and Science, 5(1), 84–99.
42. Zhang, Q., Pennycott, A., Burke, R., Akehurst, S. & Brace, C. (2015). Predicting the Nitrogen Oxides Emissions of a Diesel Engine using Neural Networks. SAE Technical Papers, 2015.