An Efficient Method for Solving the Fuzzy AH1N1/09 Influenza Model Using the Fuzzy Atangana-Baleanu-Caputo Fractional Derivative
Subject Areas : Fuzzy Optimization and Modeling Journal
1 -
Keywords: Atangana-Baleanu-Caputo (ABC) derivative, Fuzzy Atangana-Baleanu-Caputo Fractional Derivative, Fuzzy AH1N1/09 Influenza Model,
Abstract :
The AH1N1/09 influenza virus is one of the most dangerous viruses that has greatly affected human life. As it is an unstable virus and new types of it with different features are created every year, its investigation is important. Various mathematical models have been proposed to describe such diseases. In this paper, mathematical modeling in the form of fractional differential equations with the Atangana-Baleanu-Caputo (ABC) derivative and initial value is proposed to study this virus. Since the nature of the virus and how it affects the human body are ambiguous and imprecise, its fuzzy model is discussed. By using tools such as r-cut, generalized Hakuhara difference, ABC fractional derivative in fuzzy mode, and ABC-PI numerical method, the proposed model is solved numerically. At the end, a numerical example is provided to show the applicability of the method.
1. Abdoon, M. A., Saadeh, R., Berir, M., & Guma, F. E. (2023). Analysis, modeling and simulation of a fractional-order influenza model. Alexandria Engineering Journal, 74, 231-240.
2. Allahviranloo, T., & Ghanbari, B. (2020). On the fuzzy fractional differential equation with interval Atangana–Baleanu fractional derivative approach. Chaos, Solitons & Fractals, 130, 109397.
3. Al-Tawfiq, J. A., Abed, M., Saadeh, B. M., Ghandour, J., Shaltaf, M., & Babiker, M. M. (2011). Pandemic influenza A (2009 H1N1) in hospitalized patients in a Saudi Arabian hospital: epidemiology and clinical comparison with H1N1-negative patients. Journal of Infection and Public Health, 4(5-6), 228-234.
4. Babakordi, F., & Allahviranloo, T. (2023). Application of fuzzy ABC fractional differential equations in infectious diseases. Computational Methods for Differential Equations. 2023, 10.22034/cmde.2023.47768.2000.
5. Boni, M. F., Manh, B. H., Thai, P. Q., Farrar, J., Hien, T. T., Hien, N. T., & Horby, P. (2009). Modelling the progression of pandemic influenza A (H1N1) in Vietnam and the opportunities for reassortment with other influenza viruses. BioMed Central Medicine, 7, 1-12.
6. Brockwell‐Staats, C., Webster, R. G., & Webby, R. J. (2009). Diversity of influenza viruses in swine and the emergence of a novel human pandemic influenza A (H1N1). Influenza and Other Respiratory Viruses, 3(5), 207-213.
7. Brockwell‐Staats, C., Webster, R. G., & Webby, R. J. (2009). Diversity of influenza viruses in swine and the emergence of a novel human pandemic influenza A (H1N1). Influenza and Other Respiratory Viruses, 3(5), 207-213.
8. Evirgen, F., Esmehan, U. Ç. A. R., Sümeyra, U. Ç. A. R., & Özdemir, N. (2023). Modelling influenza a disease dynamics under Caputo-Fabrizio fractional derivative with distinct contact rates. Mathematical Modelling and Numerical Simulation with Applications, 3(1), 58-72.
9. Gao, W., Ghanbari, B., & Baskonus, H. M. (2019). New numerical simulations for some real world problems with Atangana–Baleanu fractional derivative. Chaos, Solitons & Fractals, 128, 34-43.
10. Ghanbari, B., & Kumar, D. (2019). Numerical solution of predator-prey model with Beddington-DeAngelis functional response and fractional derivatives with Mittag-Leffler kernel. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(6).
11. González-Parra, G., Arenas, A. J., Aranda, D. F., & Segovia, L. (2011). Modeling the epidemic waves of AH1N1/09 influenza around the world. Spatial and Spatio-Temporal Epidemiology, 2(4), 219-226.
12. Hasan, F., Khan, M. O., & Ali, M. (2018). Swine flu: knowledge, attitude, and practices survey of medical and dental students of Karachi. Cureus, 10(1).
13. Jafelice, R. M., de Barros, L. C., Bassanezi, R. C., & Gomide, F. (2004). Fuzzy modeling in symptomatic HIV virus infected population. Bulletin of Mathematical Biology, 66, 1597-1620.
14. Kaddar, A. (2009). On the dynamics of a delayed SIR epidemic model with a modified saturated incidence rate. Electronic Journal of Differential Equations, 2009, 1-7.
15. LaRussa, P. (2011). Pandemic novel 2009 H1N1 influenza: what have we learned? In Seminars in respiratory and critical care medicine, 32(4), 393-399.
16. Lohm, D., Davis, M., Flowers, P., & Stephenson, N. (2015). ‘Fuzzy’virus: indeterminate influenza biology, diagnosis and surveillance in the risk ontologies of the general public in time of pandemics. Health, Risk & Society, 17(2), 115-131.
17. Malveiro, D., Flores, P., Sousa, E., & Guimarães, J. C. (2012). The 2009 pandemic influenza A (H1N1) virus infection: Experience of a paediatric service at a third-level hospital in Lisbon, Portugal. Revista Portuguesa de Pneumologia (English Edition), 18(4), 175-181.
18. Mpeshe, S. C. (2022). Fuzzy SEIR epidemic model of amoebiasis infection in human. Advances in Fuzzy Systems, 2022.
19. Mpeshe, S. C., & Nyerere, N. (2019). Modeling approach to assess the transmission dynamics of Hepatitis B infection in Africa. International Journal of Applied Mathematics and Mechanics, 6(3), 51-61.
20. Nelson, M. I., Souza, C. K., Trovão, N. S., Diaz, A., Mena, I., Rovira, A., & Culhane, M. R. (2019). Human-origin influenza A (H3N2) reassortant viruses in swine, Southeast Mexico. Emerging Infectious Diseases, 25(4), 691-700.
21. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team. (2009). Emergence of a novel swine-origin influenza A (H1N1) virus in humans. New England Journal of Medicine, 360(25), 2605-2615.
22. Petrova, A. V., Smirnova, I. E., Fedij, S. V., Pavlyukova, Y. N., Zarubaev, V. V., Tran Thi Phuong, T., & Kazakova, O. B. (2023). Synthesis and Inhibition of Influenza H1N1 Virus by Propargylaminoalkyl Derivative of Lithocholic Acid. Molbank, 2023(2), M1626.
23. Rezapour, S., & Mohammadi, H. (2020). A study on the AH1N1/09 influenza transmission model with the fractional Caputo–Fabrizio derivative. Advances in Difference Equations, 2020(1), 1-15.
24. Roxas, M., & Jurenka, J. (2007). Colds and influenza: a review of diagnosis and conventional, botanical, and nutritional considerations. Alternative Medicine Review, 12(1), 25-48.
25. Tapia, R., García, V., Mena, J., Bucarey, S., Medina, R. A., & Neira, V. (2018). Infection of novel reassortant H1N2 and H3N2 swine influenza A viruses in the guinea pig model. Veterinary Research, 49, 1-8.
26. Tuckwell, H. C., & Wan, F. Y. (2004). On the behavior of solutions in viral dynamical models. BioSystems, 73(3), 157-161.
27. Verma, R. (2018). Fuzzy modeling for the spread of influenza virus and its possible control. Computational Ecology and Software, 8(1), 32-45.
28. Verma, R., Tiwari, S. P., & Upadhyay, R. K. (2017, August). Dynamical behaviors of fuzzy SIR epidemic model. In Proceedings of the Conference of the European Society for Fuzzy Logic and Technology (pp. 482-492). Cham: Springer International Publishing.
29. WHO, C. O. (2020). World health organization. Responding to Community Spread of COVID-19. Reference WHO/COVID-19/Community-Transmission/2020.1.