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A R T I C L E  I N F O  A B S T R A C T 

One of the most devastating viruses that has significantly impacted human life 

is the AH1N1/09 influenza virus. Its examination is crucial since the virus is 

unstable and new varieties with distinct properties are produced every year. To 

describe these disorders, numerous mathematical models have been presented. 

In order to investigate this virus, mathematical modeling using fractional 

differential equations with the Atangana-Baleanu-Caputo derivative and initial 

values is suggested in this research. The fuzzy model of the virus is examined 

due to the confusing and imprecise nature of the virus and the way it affects the 

human body. The proposed model is solved numerically using tools such as r-

cut, generalized Hakuhara difference, ABC fractional derivative, and ABC-PI 

numerical method. Finally, the applicability of the method is shown via a 

numerical example.  
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1. Introduction 

Influenza disease is an acute respiratory infection caused by influenza viruses that have different types, the 

most dangerous of which is the influenza A virus. This virus causes a local epidemic of influenza every winter, 

despite previous infections with the common influenza virus in the region. Wider genetic changes may occur in 

the virus, and as a result, a new virus may emerge that can cause more severe pathogenicity and even a global 

pandemic [24]. The H1N1/A influenza virus was first reported in 2009 in Mexico and several states of the 

United States, with a different pathogenicity and form than the seasonal types. It then spread rapidly to most 

parts of the world, and according to the World Health Organization (WHO), two months after the first report, it 

became an epidemic in the whole world. This virus emerged as a result of the simultaneous infection of pigs 

with common subtypes of influenza type A and the simultaneous multiplication and displacement of their 

genomes, which led to more severe pathogenicity than other seasonal subtypes [6, 21]. According to the WHO 
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report, in a short time after the outbreak of the disease, many people lost their lives around the world [29]. 

H1N1 influenza is a type of swine flu that is considered a dangerous disease due to the transformation of this 

virus and its attack on the human body, and it causes a more severe disease than other types. This virus is so 

unstable that new types with different characteristics emerge every year. Consequently, it is very important to 

study and investigate this model to provide immunity against new types. So far, extensive research has been 

conducted in this field [1,3,4,7,8, 12,17, 20, 25, 29]. 

In [5], a new interesting mathematical model was proposed according to age and spatial structure in order to 

estimate the potential impact of the H1N1 virus in Vietnam. 

Thereafter, the issue of modeling epidemic waves throughout the world gained attention. In this regard, the 

classic Susceptible-Exposed-Infectious-Removed (SEIR) model was proposed for the dynamic transmission of 

the AH1N1/09 virus. Moreover, mathematical models based on systems of ordinary differential equations with 

two independent and dependent communities were proposed to reproduce two-wave profiles [11]. 

Lohm et al. [16] stated that the influenza virus basically involves uncertainty. Therefore, they investigated 

how the general public can understand the 'ambiguous' concept of the influenza virus and adapt themselves to 

infection control actions. 

Recently, the SEIR epidemic model for propagation of the AH1N1 influenza under the Caputo-Fabrizio 

fractional-order derivative has been discussed in [23], and by applying the fixed-point theorem, the existence 

and uniqueness of the solution were investigated, and then the numerical solution of the mathematical model 

was achieved. In [22], the synthesis and inhibition of the H1N1 influenza virus by a propargylaminoalkyl 

derivative of lithocholic acid were studied. Due to the fact that the two sides of the disease, i.e., human and 

virus, are ambiguous in nature, fuzzy modeling of the diseases has recently received attention [13,14,18,28]. 

Verma et al. analyzed a model of influenza spread with an asymptotic transmission rate, wherein the disease 

transmission and death rates were considered fuzzy sets [28]. In [19], a fuzzy SEIR epidemic model was 

proposed for human amoebiasis infection. Allahvirenloo and Ghanbari proposed the ABC fractional derivative 

on fuzzy set-valued functions in a parametric interval [2].  

In this paper, we use the ABC fractional derivative to investigate the AH1N1/09 influenza model in fuzzy 

form. The main contributions of this research are: 1) all the parameters are considered fuzzy; and 2) the ABC 

fractional derivative is utilized to discuss and examine the influenza virus model. 

The structure of the paper is as follows: In Section 2, some necessary basic theories are presented. In 

Section 3, the AH1N1/09 influenza model with fuzzy variables is studied based on the fractional ABC-fuzzy 

derivative. A numerical example is provided in Section 4, and the conclusion is given in Section 5. 

2. Preliminaries  

In this section, the basic definitions required for the next sections are presented.  

Definition 1. A fuzzy number 𝑢 in parametric form is a pair 𝑢[𝑟] =  [ 𝑢 (𝑟), 𝑢 (𝑟)] of functions 𝑢 (𝑟) and 

𝑢 (𝑟), 0 ≤ 𝑟 ≤ 1, that satisfy the following requirements: 

 𝑢 (𝑟) is a bounded non-decreasing left continuous function in (0,1], and right continuous at 0, 

 𝑢 (𝑟) is a bounded non-increasing left continuous function in (0,1], and right continuous at 1, 

 𝑢 (𝑟)  ≤  𝑢 (𝑟), 0 ≤ 𝑟 ≤ 1. 

Definition 2. For arbitrary fuzzy numbers u[𝑟] = [𝑢 (𝑟), 𝑢 (𝑟)]  and 𝑣[𝑟] = [ 𝑣 (𝑟), 𝑣 (𝑟)] , addition and 

scalar multiplication are defined as follows for 0 ≤ 𝑟 ≤ 1: 

 (𝑢 ⊕ 𝑣) [𝑟] = [ 𝑢 (𝑟) + 𝑣 (𝑟), 𝑢 (𝑟) + 𝑣 (𝑟)], 

 (λ u)[𝑟] = {
[𝜆 𝑢(𝑟), 𝜆𝑢 (𝑟)],       𝜆 ≥ 0

[𝜆 𝑢 (𝑟), 𝜆𝑢(𝑟)]      𝜆 < 0
 

 (u⊙ v)[𝑟] = [𝑢(𝑟)𝑣(𝑟), 𝑢(𝑟)𝑣(𝑟)](�̃�, �̃�  ≥ 0). 

Suppose a fuzzy-valued function 𝑦(𝑡)𝜖𝐶𝐹(𝐼) ∩ 𝐿𝐹(𝐼), then its parametric interval form can be written as: 

[𝑦(𝑡)]𝑟 = [𝑦(𝑡; 𝑟), 𝑦(𝑡; 𝑟)] , 0 ≤ 𝑟 ≤ 1. 
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Definition 3. [26] The generalized Hukhara difference of two fuzzy numbers is defined as follows: 

𝑢 ⊝𝑔ℎ  𝑣 = 𝑤 ⟺ {
(𝑖) 𝑢 = 𝑣 ⊕𝑤

(𝑖𝑖) 𝑣 = 𝑢 ⊕ (−1)𝑤
. 

The first case is equivalent to the definition of the Hukuhara difference, denoted by 𝑢 ⊖  𝑣. 

Definition 4. [26] Let 𝑥0𝜖(𝑎, 𝑏)  and ℎ  be such that 𝑥0 + ℎ 𝜖 (𝑎, 𝑏) , then the gH-derivative of a function 

𝑓: (𝑎, 𝑏) → 𝐼 can be defined as: 

𝑓′(𝑥0) = 𝑙𝑖𝑚
ℎ→0

𝑓(𝑥0 + ℎ)⊝𝑔ℎ 𝑓(𝑥0)

ℎ
 

If 𝑓′(𝑥0)𝜖𝐼  fulfills the above equation, we say that 𝑓  is generalized Hukuhara differentiable (gH-

differentiable, for short). 

Definition 5. [10] The ABC fractional derivative in the sense of Caputo is defined in two cases as follows: 

[ Dt
i,αy(t)0

ABC ]r = [ Dt
αy(t; r)0

ABC , Dt
αy(t; r)0

ABC ]  

(1) 

[ Dt
ii,αy(t)0

ABC ]r = [ Dt
αy(t; r)0

ABC , Dt
αy(t; r)0

ABC ]  

(2) 

 where 

[ Dt
i,αy(t)0

ABC ]
r
=
B(α)

1 − α
∫ [y(t; r), y(t; r)]
t

0

Eα (−
α

1 − α
(t − τ)α)  dτ 

 
(3) 

[ Dt
ii,αy(t)0

ABC ]
r
=
B(α)

1 − α
∫ [y(t; r), y(t; r), ]
t

0

Eα (−
α

1 − α
(t − τ)α)  dτ 

 
(4) 

On other hand 

It
α ( Dt

αy(t, r)0
AB )0

AB = y(t, r) − y(0, r)  
(5) 

It
α( Dt

αy(t, r)0
AB )0

AB = y(t, r) − y(0, r) 

in which 

𝐼𝑡
𝛼(𝑦(𝑡)) =0

𝐴𝐵
1 − 𝛼

𝐵(𝛼)
𝑦(𝑡) + 

𝛼

𝐵(𝛼)𝛤(𝛼)
∫ 𝑦(𝜏)
𝑡

0

(𝑡 − 𝜏)𝛼−1 𝑑𝜏 
 

(6) 

where 𝐵(𝛼) > 0 is a normalization function satisfying 𝐵(0) = 𝐵(1) = 1. 

 

3. Mathematical Modeling of AH1N1/09 Influenza Virus Transmission under a Fuzzy 

Environment Using Fuzzy ABC Fractional Derivative  

In this section, we introduce and solve the AH1N1/09 influenza virus transmission modeling problem in a 

fuzzy environment using the fuzzy ABC fractional derivative. 

Definition 6. A fuzzy SEIR model of AH1N1/09 influenza virus transmission using the ABC derivative is 

defined as below: 

{
 
 
 
 

 
 
 
 

𝐷𝑡
∗1,𝛼1�̃�(𝑡) = �̃� ⊝𝑔ℎ �̃�⨀0

𝐴𝐵𝐶 �̃�(𝑡)⨀𝐼(𝑡) ⊝𝑔ℎ �̃�⨀�̃�(𝑡),

𝐷𝑡
∗2,𝛼2�̃�(𝑡) = �̃�⨀�̃�(𝑡)⨀𝐼(𝑡) ⊝𝑔ℎ (�̃�⨁𝛿)0

𝐴𝐵𝐶 ⨀�̃�(𝑡),

𝐷𝑡
∗3,𝛼3𝐼(𝑡) = 𝛿⨀�̃�(𝑡) ⊝𝑔ℎ (�̃�⨁�̃�)0

𝐴𝐵𝐶 ⨀𝐼(𝑡),

𝐷𝑡
∗4,𝛼4�̃�(𝑡) = �̃�⨀𝐼(𝑡) ⊝𝑔ℎ �̃�0

𝐴𝐵𝐶 ⨀�̃�(𝑡),

�̃�(0) = �̃�0,

�̃�(0) = �̃�0,

𝐼(0) = 𝐼0,

�̃�(0) = �̃�0,

 

 

 

 

(7) 

  



30 F. Babakordi. / FOMJ 4(2) (2023) 27–38 

where ∗1,∗2,∗3,∗4 𝜖{𝑖, 𝑖𝑖}, 0 < 𝛼1, 𝛼2, 𝛼3, 𝛼4 < 1, 0 < 𝑡 < 𝑇 < ∞, 𝑇𝜖𝑅, and fuzzy variables are as follows: 

 

�̃�(𝑡) Susceptible individuals 

�̃�(𝑡) Exposed individuals 

𝐼(𝑡) Infected individuals 

�̃�(𝑡) Recovered individuals 

�̃� Birth rate of people 

�̃� Death rate of people 

�̃� Transmission rate of infection 

from I to S 

𝛿 Transmission rate of people from 

E to I 

�̃� Recovery rate of infected people 

 

Solving method. To calculate the fuzzy solution for (7), we assume: 

𝑓 (�̃�(𝑡), �̃�(𝑡), 𝐼(𝑡), �̃�(𝑡)) = �̃� ⊝𝑔ℎ �̃�⨀�̃�(𝑡)⨀𝐼(𝑡) ⊝𝑔ℎ �̃�⨀�̃�(𝑡) 

𝑔 (�̃�(𝑡), �̃�(𝑡), 𝐼(𝑡), �̃�(𝑡)) = �̃�⨀�̃�(𝑡)⨀𝐼(𝑡) ⊝𝑔ℎ (�̃�⨁𝛿)⨀�̃�(𝑡) 

ℎ (�̃�(𝑡), �̃�(𝑡), 𝐼(𝑡), �̃�(𝑡)) = 𝛿⨀�̃�(𝑡) ⊝𝑔ℎ (�̃�⨁�̃�)⨀𝐼(𝑡) 

𝐾 (�̃�(𝑡), �̃�(𝑡), 𝐼(𝑡), �̃�(𝑡)) = �̃�⨀𝐼(𝑡) ⊝𝑔ℎ �̃�⨀�̃�(𝑡). 

The model (7) is transformed to a fuzzy ABC fractional differential equations system with initial values as 

follows: 

{
 
 
 
 
 

 
 
 
 
 𝐷𝑡

∗1,𝛼1�̃�(𝑡) =0
𝐴𝐵𝐶 𝑓 (�̃�(𝑡), �̃�(𝑡), 𝐼(𝑡), �̃�(𝑡))

𝐷𝑡
∗2,𝛼2�̃�(𝑡) =0

𝐴𝐵𝐶 𝑔 (�̃�(𝑡), �̃�(𝑡), 𝐼(𝑡), �̃�(𝑡))

𝐷𝑡
∗3,𝛼3𝐼(𝑡) =0

𝐴𝐵𝐶 ℎ (�̃�(𝑡), �̃�(𝑡), 𝐼(𝑡), �̃�(𝑡))

𝐷𝑡
∗4,𝛼4�̃�(𝑡) =0

𝐴𝐵𝐶 𝐾 (�̃�(𝑡), �̃�(𝑡), 𝐼(𝑡), �̃�(𝑡))

�̃�(0) = �̃�0
�̃�(0) = �̃�0
𝐼(0) = 𝐼0
�̃�(0) = �̃�0

. 

 

 

 

(8) 

 

Consider the parametric form of the system of nonlinear fuzzy ABC fractional differential equations (8) as 

below: 
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{
 
 
 
 
 
 

 
 
 
 
 
 [ 𝐷𝑡

∗1,𝛼1�̃�(𝑡)0
𝐴𝐵𝐶 ]

𝑟
= [𝑓 (�̃�(𝑡), �̃�(𝑡), 𝐼(𝑡), �̃�(𝑡))]

𝑟

[ 𝐷𝑡
∗2,𝛼2�̃�(𝑡)0

𝐴𝐵𝐶 ]
𝑟
= [𝑔 (�̃�(𝑡), �̃�(𝑡), 𝐼(𝑡), �̃�(𝑡))]

𝑟

[ 𝐷𝑡
∗3,𝛼3𝐼(𝑡)0

𝐴𝐵𝐶 ]
𝑟
= [ℎ (�̃�(𝑡), �̃�(𝑡), 𝐼(𝑡), �̃�(𝑡))]

𝑟

[ 𝐷𝑡
∗4,𝛼4�̃�(𝑡)0

𝐴𝐵𝐶 ]
𝑟
= [𝑘 (�̃�(𝑡), �̃�(𝑡), 𝐼(𝑡), �̃�(𝑡))]

𝑟

[�̃�(0)]
𝑟
= [�̃�0]𝑟

[�̃�(0)]𝑟 = [�̃�0]𝑟
[𝐼(0)]𝑟 = [𝐼0]𝑟
[�̃�(0)]𝑟 = [�̃�0]𝑟

. 

 

 

 

 

    

(9) 

 

Assume that: 

[𝑓 (�̃�(𝑡), �̃�(𝑡), 𝐼(𝑡), �̃�(𝑡))]
𝑟
= [𝑓 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟)), 

𝑓 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))] 

[𝑔 (�̃�(𝑡), �̃�(𝑡), 𝐼(𝑡), �̃�(𝑡))]
𝑟
= [𝑔 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟)), 

𝑔 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))] 

[ℎ (�̃�(𝑡), �̃�(𝑡), 𝐼(𝑡), �̃�(𝑡))]
𝑟
= [ℎ (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟)), 

ℎ (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))] 

[𝑘 (�̃�(𝑡), �̃�(𝑡), 𝐼(𝑡), �̃�(𝑡))]
𝑟
= [𝑘 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟)), 

                                      𝑘 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))                    (10) 

 

When solving system (8), different cases can occur as follows: 

 

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

∗1 i ii i i i ii i i ii i ii i ii ii ii ii 

∗2 i i ii i i ii ii i i ii i ii i ii ii ii 

∗3 i i i ii i i ii ii i i ii ii ii i ii ii 

∗4 i i i i ii i i ii ii ii i ii ii ii i ii 

 

We explain the method for the first case. As it is similar in other cases, they will not be discussed to avoid 

repetition. 

Case 1) ∗1=∗2=∗3=∗3= i 

Using the fuzzy ABC derivative and placing (1), (2), and (10) in (9), we obtain: 

[ 𝐷𝑡
𝛼𝑆(𝑡, 𝑟)0

𝐴𝐵𝐶 , 𝐷𝑡
𝛼𝑆(𝑡, 𝑟)0

𝐴𝐵𝐶 ] = [𝑓 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟)), 

𝑓 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))] 

[ 𝐷𝑡
𝛼𝐸(𝑡, 𝑟)0

𝐴𝐵𝐶 , 𝐷𝑡
𝛼𝐸(𝑡, 𝑟)0

𝐴𝐵𝐶 ] = [𝑔 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟)), 

𝑔 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))] 



32 F. Babakordi. / FOMJ 4(2) (2023) 27–38 

[ 𝐷𝑡
𝛼𝐼(𝑡, 𝑟)0

𝐴𝐵𝐶 , 𝐷𝑡
𝛼𝐼(𝑡, 𝑟)0

𝐴𝐵𝐶 ] = [ℎ (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟)), 

ℎ (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))] 

[ 𝐷𝑡
𝛼𝑅(𝑡, 𝑟)0

𝐴𝐵𝐶 , 𝐷𝑡
𝛼𝑅(𝑡, 𝑟)0

𝐴𝐵𝐶 ] = [𝑘 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟)), 

                            𝑘 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))]]                               (11) 

Therefore, applying the fractional integral on both sides of Equations (5) and (6) results in: 

             𝑆(𝑡, 𝑟) − 𝑆(0, 𝑟)

=
1 − 𝛼

𝐵(𝛼)
𝑓 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))

+
𝛼

𝐵(𝛼)𝛤(𝛼)
∫ 𝑓 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))
𝑡

0

(𝑡

− 𝜏)𝛼−1 𝑑𝜏 

 

              𝑆(𝑡, 𝑟) − 𝑆(0, 𝑟)

=
1 − 𝛼

𝐵(𝛼)
𝑓 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))  

+ 
𝛼

𝐵(𝛼)𝛤(𝛼)
∫ 𝑓 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))
𝑡

0

(𝑡

− 𝜏)𝛼−1 𝑑𝜏 
             𝐸(𝑡, 𝑟) − 𝐸(0, 𝑟)

=
1 − 𝛼

𝐵(𝛼)
𝑔 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))

+
𝛼

𝐵(𝛼)𝛤(𝛼)
∫ 𝑔 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))
𝑡

0

(𝑡

− 𝜏)𝛼−1 𝑑𝜏 

             𝐸(𝑡, 𝑟) − 𝐸(0, 𝑟)

=
1 − 𝛼

𝐵(𝛼)
𝑔 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))  

+ 
𝛼

𝐵(𝛼)𝛤(𝛼)
∫ 𝑔 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))
𝑡

0

(𝑡

− 𝜏)𝛼−1 𝑑𝜏 
             𝐼(𝑡, 𝑟) − 𝐼(0, 𝑟)

=
1 − 𝛼

𝐵(𝛼)
ℎ (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))

+
𝛼

𝐵(𝛼)𝛤(𝛼)
∫ ℎ (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))
𝑡

0

(𝑡

− 𝜏)𝛼−1 𝑑𝜏 

             𝐼(𝑡, 𝑟) − 𝐼(0, 𝑟)

=
1 − 𝛼

𝐵(𝛼)
ℎ (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟)) 

+ 
𝛼

𝐵(𝛼)𝛤(𝛼)
∫ ℎ (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))
𝑡

0

(𝑡

− 𝜏)𝛼−1 𝑑𝜏 
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              𝑅(𝑡, 𝑟) − 𝑅(0, 𝑟)

=
1 − 𝛼

𝐵(𝛼)
𝑘 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))

+
𝛼

𝐵(𝛼)𝛤(𝛼)
∫ 𝑘 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))
𝑡

0

(𝑡

− 𝜏)𝛼−1 𝑑𝜏 

       𝑅(𝑡, 𝑟) − 𝑅(0, 𝑟) =
1−𝛼

𝐵(𝛼)
𝑘 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))  +

          
𝛼

𝐵(𝛼)𝛤(𝛼)
∫ 𝑘 (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐸(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝐼(𝑡, 𝑟), 𝑅(𝑡, 𝑟), 𝑅(𝑡, 𝑟))
𝑡

0
(𝑡 − 𝜏)𝛼−1 𝑑𝜏   (12) 

 

By placing 𝑡 = 𝑡𝑛 = 0 + 𝑛ℎ in the above equations and using the ABC-PI formula [25-26], we have: 

         S(tn, r) − S(0, r)

=
ρ hρ

Κ(ρ)
(εnf (S(0, r), S(0, r), E(0, r), E(0, r), I(0, r), I(0, r), R(0, r), R(0, r))

+∑μn−i

n

i=1

f (S(ti, r), S(ti, r), E(ti, r), E(ti, r), I(ti, r), I(ti, r), R(ti, r), R(ti, r))) 

          S̅(tn, r) − S̅(0, r)

=
ρ hρ

Κ(ρ)
(εnf (S(0, r), S(0, r), E(0, r), E(0, r), I(0, r), I(0, r), R(0, r), R(0, r))

+∑μn−i

n

i=1

f (S(ti, r), S(ti, r), E(ti, r), E(ti, r), I(ti, r), I(ti, r), R(ti, r), R(ti, r))) 

         E(tn, r) − E(0, r)

=
σ hρ

Κ(σ)
(ε′ng (S(0, r), S(0, r), E(0, r), E(0, r), I(0, r), I(0, r), R(0, r), R(0, r))

+∑ϑn−i

n

i=1

g (S(ti, r), S(ti, r), E(ti, r), E(ti, r), I(ti, r), I(ti, r), R(ti, r), R(ti, r))) 

           E̅(tn, r) − E̅(0, r)

=
σ hρ

Κ(σ)
(ε′ng (S(0, r), S(0, r), E(0, r), E(0, r), I(0, r), I(0, r), R(0, r), R(0, r))

+∑ϑn−i

n

i=1

g (S(ti, r), S(ti, r), E(ti, r), E(ti, r), I(ti, r), I(ti, r), R(ti, r), R(ti, r))), 

            𝐼(tn, r) − I(0, r)

=
θ hρ

Κ(θ)
(ε′′nh(S(0, r), S(0, r), E(0, r), E(0, r), I(0, r), I(0, r), R(0, r), R(0, r))

+∑γn−i

n

i=1

h (S(ti, r), S(ti, r), E(ti, r), E(ti, r), I(ti, r), I(ti, r), R(ti, r), R(ti, r))), 
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               I(̅tn, r) − I(̅0, r)

=
θ hρ

Κ(θ)
(ε′′nh(S(0, r), S(0, r), E(0, r), E(0, r), I(0, r), I(0, r), R(0, r), R(0, r))

+∑γn−i

n

i=1

h (S(ti, r), S(ti, r), E(ti, r), E(ti, r), I(ti, r), I(ti, r), R(ti, r), R(ti, r))) 

          R(tn, r) − R(0, r)

=
θ′hρ

Κ(θ′)
(ε′′′nk (S(0, r), S(0, r), E(0, r), E(0, r), I(0, r), I(0, r), R(0, r), R(0, r))  

+∑γ′n−i

n

i=1

k (S(ti, r), S(ti, r), E(ti, r), E(ti, r), I(ti, r), I(ti, r), R(ti, r), R(ti, r))) 

           R̅(tn, r) − R̅(0, r)

=
θ′ hρ

Κ(θ′)
(ε′′′nk (S(0, r), S(0, r), E(0, r), E(0, r), I(0, r), I(0, r), R(0, r), R(0, r))

+∑γ′n−i

n

i=1

k (S(ti, r), S(ti, r), E(ti, r), E(ti, r), I(ti, r), I(ti, r), R(ti, r), R(ti, r))) 

Finally, using fuzzy arithmetic operations in this case, system (8) has solutions as follows: 

�̃�(𝑡𝑛) = �̃�(0)⊕
𝜌 ℎ𝜌

𝛫(𝜌)
(휀𝑛𝑓 (�̃�(0), �̃�(0), 𝐼(0), �̃�(0))⊕∑𝜇𝑛−𝑖

𝑛

𝑖=1

𝑓 (�̃�(𝑡𝑖), �̃�(𝑡𝑖), 𝐼(𝑡𝑖), �̃�(𝑡𝑖))) 

�̃�(𝑡𝑛) = �̃�(0)⊕
𝜎 ℎ𝜌

𝛫(𝜎)
(휀′𝑛𝑔 (�̃�(0), �̃�(0), 𝐼(0), �̃�(0))⊕∑𝜗𝑛−𝑖

𝑛

𝑖=1

𝑔(𝑡𝑖 , 𝑥(𝑡𝑖), 𝑦(𝑡𝑖), 𝑧(𝑡𝑖))) 

𝐼(𝑡𝑛) = 𝐼(0)⊕
𝜃  ℎ𝜌

𝛫(𝜃)
(휀′′𝑛ℎ (�̃�(0), �̃�(0), 𝐼(0), �̃�(0))⊕∑𝛾𝑛−𝑖

𝑛

𝑖=1

ℎ(𝑡𝑖, 𝑥(𝑡𝑖), 𝑦(𝑡𝑖), 𝑧(𝑡𝑖))) 

�̃�(𝑡𝑛) = �̃�(0)⊕
𝜃′  ℎ𝜌

𝛫(𝜃′)
(휀′′′𝑛𝑘 (�̃�(0), �̃�(0), 𝐼(0), �̃�(0))⊕∑ 𝛾′𝑛−𝑖

𝑛
𝑖=1 𝑘(𝑡𝑖 , 𝑥(𝑡𝑖), 𝑦(𝑡𝑖), 𝑧(𝑡𝑖)))     (13) 

where 

𝛫(𝑥) = 1 − 𝑥 +
𝑥

𝛤(𝑥)
,   𝑥 = 𝜌 𝑜𝑟 𝜎𝑜𝑟 𝜃𝑜𝑟𝜃′ 

   휀𝑛 =
(𝑛 − 1)𝜌+1 − 𝑛𝜌(𝑛 − 𝜌 − 1)

𝛤(𝜌 + 2)
, 휀′𝑛 =

(𝑛 − 1)𝜎+1 − 𝑛𝜎(𝑛 − 𝜎 − 1)

𝛤(𝜎 + 2)
 

 

   휀′′𝑛 =
(𝑛 − 1)𝜃+1 − 𝑛𝜃(𝑛 − 𝜃 − 1)

𝛤(𝜃 + 2)
, 휀′′′𝑛 =

(𝑛 − 1)𝜃
′+1 − 𝑛𝜃

′
(𝑛 − 𝜃′ − 1)

𝛤(𝜃′ + 2)
 

 

           𝜇𝑗 = {

1

𝛤(𝜌+2)
+
1−𝜌

𝜌ℎ𝜌
                          𝑗 = 0

(𝑗−1)𝜌−1−2𝑗𝜌+1+(𝑗+1)𝜌+1

𝛤(𝜌+2)
                 𝑗 = 1,2, … , 𝑛 − 1
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    𝜗𝑗 =

{
 
 

 
 1

𝛤(𝜎 + 2)
+
1 − 𝜎

𝜎ℎ𝜎
                         𝑗 = 0

(𝑗 − 1)𝜌−1 − 2𝑗𝜌+1 + (𝑗 + 1)𝜌+1

𝛤(𝜌 + 2)
                𝑗 = 1,2, … , 𝑛 − 1

 

 

           𝛾𝑗 = {

1

𝛤(𝜃+2)
+
1−𝜃

𝜃ℎ𝜃
                         𝑗 = 0

(𝑗−1)𝜃−1−2𝑗𝜃+1+(𝑗+1)𝜃+1

𝛤(𝜃+2)
                𝑗 = 1,2,… , 𝑛 − 1

 

 

  𝛾′𝑗 =

{
 
 

 
 

1

𝛤(𝜃′ + 2)
+
1 − 𝜃′

𝜃′ℎ𝜃
′                          𝑗 = 0

(𝑗 − 1)𝜃
′−1 − 2𝑗𝜃

′+1 + (𝑗 + 1)𝜃
′+1

𝛤(𝜃′ + 2)
                𝑗 = 1,2, … , 𝑛 − 1

 

 

Remark 1. In this paper, a method is proposed to solve the system of fractional differential integral equations in 

the form of (7). The proposed method can also be applied to the general form of the system of fractional 

differential integral equations as follows: 

{
 
 

 
 

𝐷𝑡
∗1,𝛼1�̃�1(𝑡) = 𝑓11(𝑡)0

𝐴𝐵𝐶 �̃�1(𝑡) + 𝑓12(𝑡)�̃�2(𝑡) + ⋯+ 𝑓1𝑛(𝑡)�̃�n(𝑡)

𝐷𝑡
∗2,𝛼2�̃�2(𝑡) = 𝑓21(𝑡)0

𝐴𝐵𝐶 �̃�1(𝑡) + 𝑓22(𝑡)�̃�2(𝑡) + ⋯+ 𝑓2𝑛(𝑡)�̃�n(𝑡)
.
.
.

𝐷𝑡
∗𝑛,𝛼𝑛�̃�n(𝑡) = 𝑓𝑛1(𝑡)0

𝐴𝐵𝐶 �̃�1(𝑡) + 𝑓𝑛2(𝑡)�̃�2(𝑡) + ⋯+ 𝑓𝑛𝑛(𝑡)�̃�n(𝑡)

 

Where 

 ∗1,∗2, … ,∗n ϵ{𝑖, 𝑖𝑖} , 0 < 𝛼1, 𝛼2, . . , 𝛼𝑛 < 1 , 0 < 𝑡 < 𝑇 < ∞ , 𝑇𝜖𝑅 , �̃�1(𝑡), �̃�2(𝑡),… , �̃�n(𝑡)𝜖𝐶
𝐹(𝐼) ∩ 𝐿𝐹(𝐼) , 

𝐼 = [0, 𝑇] ⊆ 𝑅,  

and 𝑓𝑘𝑗(𝑡) are real-valued functions for 1 ≤ 𝑘, 𝑗 ≤ 𝑛. 

 

Remark 2. In solving the model, it is assumed that the coefficients are positive and that a generalized Hakuhara 

difference exists. 

4. Numerical Example 

In this section, an example is presented to verify the effectiveness of the proposed method. 

Example 1. Consider the following AH1N1/09 influenza transmission fuzzy mathematical model: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝐷𝑡

ii,𝛼1�̃�(𝑡) = [
0.015

52
,
0.015

52
]⊖ [3 + 0.58𝑟, 4 − 0.42𝑟]⨀0

𝐴𝐵𝐶 �̃�(𝑡)⨀𝐼(𝑡)⊖ [
0.015

52
,
0.015

52
]⨀�̃�(𝑡)

𝐷𝑡
i,𝛼2�̃�(𝑡) = [3 + 0.58𝑟, 4 − 0.42𝑟]⨀�̃�(𝑡)⨀𝐼(𝑡) ⊝ ([

0.015

52
,
0.015

52
]⨁[0.2𝑟, 0.3 − 0.1𝑟])0

𝐴𝐵𝐶 ⨀�̃�(𝑡)

𝐷𝑡
ii,𝛼3𝐼(𝑡) = [0.2𝑟, 0.3 − 0.1𝑟]⨀�̃�(𝑡) ⊝𝑔ℎ ([

0.015

52
,
0.015

52
]⨁[0.1 + 0.043𝑟, 0.3 − 0.157𝑟])0

𝐴𝐵𝐶 ⨀𝐼(𝑡)

𝐷𝑡
i,𝛼4�̃�(𝑡) = [0.1 + 0.043𝑟, 0.3 − 0.157𝑟]⨀𝐼(𝑡) ⊝𝑔ℎ [

0.015

52
,
0.015

52
]0

𝐴𝐵𝐶 ⨀�̃�(𝑡)

�̃�(0) = [0.8 + 0.199r, 0.999]

�̃�(0) = 0

𝐼(0) = [0.001r, 0.002 − 0.001r]

�̃�(0) = 0

 

 

 

 

 

    

(15) 
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For the above parametric form, the following system is considered: 

 

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 𝐷𝑡

ii,𝛼1S(𝑡, 𝑟) =
0.015

52
− (3 + 0.58𝑟)(0

𝐴𝐵𝐶 S(𝑡, 𝑟). I(𝑡, 𝑟)) −
0.015

52
S(𝑡, 𝑟)

𝐷𝑡
ii,𝛼1S(𝑡, 𝑟) =

0.015

52
− (4 − 0.42𝑟)(0

𝐴𝐵𝐶 S(𝑡, 𝑟). I(𝑡, 𝑟)) −
0.015

52
S(𝑡, 𝑟)

𝐷𝑡
i,𝛼2E(𝑡, 𝑟) = (3 + 0.58𝑟) (S(𝑡, 𝑟). I(𝑡, 𝑟)) − (

0.015

52
+ 0.2𝑟)0

𝐴𝐵𝐶 E(𝑡, 𝑟)

𝐷𝑡
i,𝛼2E(𝑡, 𝑟) = (4 − 0.42𝑟) (S(𝑡, 𝑟). I(𝑡, 𝑟)) − (

0.015

52
+ 0.3 − 0.1𝑟)0

𝐴𝐵𝐶 E(𝑡, 𝑟)

𝐷𝑡
ii,𝛼3I(𝑡, 𝑟) = 0.2𝑟 (E(𝑡, 𝑟)) − (

0.015

52
+ 0.1 + 0.043𝑟)0

𝐴𝐵𝐶 I(𝑡, 𝑟)

𝐷𝑡
ii,𝛼3I(𝑡, 𝑟) = (0.3 − 0.1𝑟) (E(𝑡, 𝑟)) − (

0.015

52
+ 0.3 + 0.157𝑟)0

𝐴𝐵𝐶 I(𝑡, 𝑟)

𝐷𝑡
i,𝛼4R(𝑡, 𝑟) = (0.1 + 0.043𝑟)I(𝑡, 𝑟) −

0.015

520
𝐴𝐵𝐶 R(𝑡, 𝑟)

𝐷𝑡
i,𝛼4R(𝑡, 𝑟) = (0.3 − 0.157𝑟)I(𝑡, 𝑟) −

0.015

520
𝐴𝐵𝐶 R(𝑡, 𝑟)

S(0, 𝑟) = 0.8 + 0.199r, S(0, 𝑟) = 0.999 

E(0, 𝑟) = 0, E(0, 𝑟) = 0

I(0, 𝑟) = 0.001r, I(0, 𝑟) = 0.002 − 0.001r

R(0, 𝑟) = 0, R(0, 𝑟) = 0

 

 

 

 

 

 

 

(16) 

 

As in the previous section, by using the ABC-PI method, the solution to the above system and then the 

fuzzy solution to (15) can be easily obtained. 

5. Conclusions 

Since the two sides of the influenza disease transmission model, i.e., human and virus, are ambiguous in 

nature, it is necessary to develop these models in a fuzzy state. Considering the importance of solving these 

models and the fact that the more accurate the model, the closer the solution is to the real-world problem, in this 

paper we introduced the mathematical modeling of AH1N1/09 influenza virus transmission under a fuzzy 

environment using the fuzzy ABC fractional derivative. By defining new symbols, this model was considered a 

system of fuzzy fractional differential equations and was solved using the r-cut and ABC-PI methods. One of 

the advantages of the proposed method is its practicality, but it is not easy to solve the systems of the form (12). 

Therefore, MATLAB software was utilized to solve it based on the ABC-PI method. In the future, we will 

examine this model using the fuzzy Caputo-Fabrizio derivative, try to simplify the complexities of the 

equations, and then compare the results with those of the current research. 
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