• فهرس المقالات equilibrium Green’s function

      • حرية الوصول المقاله

        1 - The effect of structural defects on the electron transport of MoS2 nanoribbons based on density functional theory
        Farahnaz Zakerian Morteza Fathipour Rahim Faez Ghafar Darvish
        AbstractUsing non-equilibrium Green’s function method and density functional theory, we study the effect of line structural defects on the electron transport of zigzag molybdenum disulfide (MoS2) nanoribbons. Here, the various types of non-stoichiometric line defects gr أکثر
        AbstractUsing non-equilibrium Green’s function method and density functional theory, we study the effect of line structural defects on the electron transport of zigzag molybdenum disulfide (MoS2) nanoribbons. Here, the various types of non-stoichiometric line defects greatly affect the electron conductance of MoS2 nanoribbons. Although such defects would be lead to the electron scattering, they can increase the transmission of charge carriers by creating new channels. In addition, the presence of S bridge defect in the zigzag MoS2 nanoribbon leads to more the transmission of charge carriers in comparison with the Mo–Mo bond defect. Also, we find that the different atomic orbitals and their bonding structure at the edge affect the electron conductance of MoS2 nanoribbons. Moreover, we calculate the spin-dependent transport of MoS2 nanoribbons and showed that the spin polarization increases at the non-zigzag edges and remains even in the presence of the defect. This study presents a deep understanding of created properties in MoS2 nanoribbons due to the presence of structural defects. تفاصيل المقالة
      • حرية الوصول المقاله

        2 - First principle study of the effect of defects on performance of single-molecule pentacene field effect transistors
        Bahniman Ghosh Akash Gramin
        AbstractIn this work, we have performed first principle study on a single-molecule pentacene field effect transistor and studied various oxygen- and hydrogen-induced defects in the same device configuration. Further, we have investigated the effect of these defects on t أکثر
        AbstractIn this work, we have performed first principle study on a single-molecule pentacene field effect transistor and studied various oxygen- and hydrogen-induced defects in the same device configuration. Further, we have investigated the effect of these defects on the various electronic transport properties of the device and compared them with those of the original device along with reporting the negative differential region window and the peak-to-valley ratio in different cases. For this purpose, we have applied the density functional theory in conjugation with non-equilibrium green’s function (NEGF) formalism on a 14.11 Å pentacene device to obtain the I–V characteristics, conductance curves and transmission spectra in various device scenarios. تفاصيل المقالة