• فهرس المقالات catalytic combustion

      • حرية الوصول المقاله

        1 - Study of catalytic performance of LaMnO3 and LaMnO3-ZSM-5 nanocatalysts toward 2-propanol conversion
        Seyed Ali Hosseini
        LaMnO3 and LaMnO3/ZSM-5 nano catalysts were synthesized by Pechini method and their physical-chemical properties were characterized using XRD, FTIR, SEM-EDX, UV-vis DRS, BET surface area and TPR. The correlation between characteristic properties and activity of catalyst أکثر
        LaMnO3 and LaMnO3/ZSM-5 nano catalysts were synthesized by Pechini method and their physical-chemical properties were characterized using XRD, FTIR, SEM-EDX, UV-vis DRS, BET surface area and TPR. The correlation between characteristic properties and activity of catalysts were investigated. The catalytic performance of the catalysts was evaluated in combustion of 2-propanol and compared with 1% Pt/Al2O3 performance. The results of SEM and UV-Vis DRS of LaMnO3/ZSM-5 indicated the well dispersion of the perovskite oxide on the support. The results of TPR indicated no direct correlation between the activity and reducibility of the catalysts. The catalytic studies revealed that the supporting of LaMnO3 increased the conversion rate of 2-propanol, which is ascribed to higher surface area, more availability of catalytic sites to probe molecules. In addition, the stability of LaMnO3/ZSM-5 was higher than that of LaMnO3 during a 10 h time on stream. The conversion rate of 2-propanol on the LaMnO3/ZSM-5 was higher even than that on the industrial 1%Pt/Al2O3 catalyst. The study showed that the perovskite/zeolite catalyst could be promising catalysts in the removal of VOCs. تفاصيل المقالة
      • حرية الوصول المقاله

        2 - MgO support mediated enhancement of La2BMnO6 (B = Co, Ni) perovskite oxide in catalytic combustion of propane
        Hamidreza Roozbahani Sarah Maghsoodi Behrouz Raei Amirhossein Shahbazi Kootenaei Zoha Azizi
        Perovskite oxides possessing high stability and composition adjustability are effective in many applications. The La2BMnO6 (B=Co, Ni) double perovskite oxides were synthesized using the sol-gel method and deposited on MgO support (loading = 10, 20, and 30 wt. %) using a أکثر
        Perovskite oxides possessing high stability and composition adjustability are effective in many applications. The La2BMnO6 (B=Co, Ni) double perovskite oxides were synthesized using the sol-gel method and deposited on MgO support (loading = 10, 20, and 30 wt. %) using a mechanical mixing method by an ultrasonic device. The elaborated samples were investigated for application in propane deep oxidation. The catalytic performance of these catalysts was analyzed by a variety of characterization techniques such as XRD, SEM, FTIR, TEM, and H2-TPR. Ni-containing catalysts were found to have superior catalytic activity than the sample containing Co. The lowest catalytic activity belonged to the cobalt-containing double perovskite with 10 wt.% loading on MgO support, while the highest conversion was related to the 20La2NiMnO6/MgO composite oxide with T90 = 434 °C. The support showed a positive impact on the performance of the catalysts. Deposition of a certain amount of perovskite oxides on the support boosted the specific surface area of the catalyst and, therefore, combined with improved reducibility, improved propane catalytic degradation. تفاصيل المقالة