• فهرس المقالات Necking

      • حرية الوصول المقاله

        1 - A New Approach for Stress State - Dependent Flow Localization Failure Bounded Through Ductile Damage in Dynamically Loaded Sheets
        F Hosseini Mansoub A Basti A Darvizeh A Zajkani
        In this paper, a new approach is proposed for stress state - dependent flow localization in bifurcation failure model bounded through ductile damage in dynamically loaded sheets. Onset of localized necking is considered in phenomenological way for different strain rates أکثر
        In this paper, a new approach is proposed for stress state - dependent flow localization in bifurcation failure model bounded through ductile damage in dynamically loaded sheets. Onset of localized necking is considered in phenomenological way for different strain rates to draw the forming limit diagram (FLD). Using a strain metal hardening exponent in the Vertex theory related to the strain rate helps investigate rate- dependent metal forming limits. Besides, the paper utilizes the model of ductile damage as a function of strain condition, stress states (triaxiality and Lode parameters), and the symbols of stiffness strain to predict the onset of the necking. It is worth noting that updated level of elasticity modulus in the plastic deforming is attributed as an essential index for the ductile damage measuring. According to original formulations, a UMAT subroutine is developed in the finite element simulation by ABAQUS code to analyze and connect the related constitutive models. Results reveal that the FLD levels increase for St 13 material through enhancing the strain rate. تفاصيل المقالة
      • حرية الوصول المقاله

        2 - An Experimental and Numerical Study of Forming Limit Diagram of Low Carbon Steel Sheets
        M Kadkhodayan H Aleyasin
        The forming limit diagram (FLD) is probably the most common representation of sheet metal formability and can be defined as the locus of the principal planar strains where failure is most likely to occur. Low carbon steel sheets have many applications in industries, esp أکثر
        The forming limit diagram (FLD) is probably the most common representation of sheet metal formability and can be defined as the locus of the principal planar strains where failure is most likely to occur. Low carbon steel sheets have many applications in industries, especially in automotive parts, therefore it is necessary to study the formability of these steel sheets. In this paper, FLDs, were determined experimentally for two grades of low carbon steel sheets using out-of-plane (dome) formability test. The effect of different parameters such as work hardening exponent (n), anisotropy (r) and thickness on these diagrams were studied. In addition, the out-of-plane stretching test with hemispherical punch was simulated by finite element software Abaqus. The limit strains occurred with localized necking were specified by tracing the thickness strain and its first and second derivatives versus time at the thinnest element. Good agreement was achieved between the predicted data and the experimental data. تفاصيل المقالة
      • حرية الوصول المقاله

        3 - The Prediction of Forming Limit Diagram of Low Carbon Steel Sheets Using Adaptive Fuzzy Inference System Identifier
        H Aleyasin
        The paper deals with devising the combination of fuzzy inference systems (FIS) and neural networks called the adaptive network fuzzy inference system (ANFIS) to determine the forming limit diagram (FLD). In this paper, FLDs are determined experimentally for two grades o أکثر
        The paper deals with devising the combination of fuzzy inference systems (FIS) and neural networks called the adaptive network fuzzy inference system (ANFIS) to determine the forming limit diagram (FLD). In this paper, FLDs are determined experimentally for two grades of low carbon steel sheets using out-of-plane (dome) formability test. The effect of different parameters such as work hardening exponent (n), anisotropy (r) and thickness on these diagrams were studied. The out-of-plane stretching test with hemispherical punch was simulated by finite element software Abaqus. The limit strains occurred with localized necking were specified by tracing the thickness strain and its first and second derivatives versus time at the thinnest element. In addition, to investigate the effect of different parameters such as work hardening exponent (n), anisotropy (r) and thickness on these diagrams, a machine learning algorithm is used to simulate a predictive framework. The method of learning algorithm uses the rudiments of neural computing through layering the FIS and using hybrid-learning optimization algorithm. In other words, for building the training database of ANFIS, the experimental work and finite element software Abaqus are used to obtain limit strains. Good agreement was achieved between the predicted data and the experimental results. تفاصيل المقالة
      • حرية الوصول المقاله

        4 - Numerical Determination of the Forming Limit Diagram for 304 Stainless Steel Based on Phase Change in Deep Drawing Process
        مسعود نصر اصفهانی مهران مرادی فرهاد حاجی ابوطالبی
        Up to now a large number of models have been developed to measure or predict the damage in equipments. Some of these models have been implemented in ABAQUS software. To implement damage parameters in the software, it is necessary to perform complex and expensive practic أکثر
        Up to now a large number of models have been developed to measure or predict the damage in equipments. Some of these models have been implemented in ABAQUS software. To implement damage parameters in the software, it is necessary to perform complex and expensive practical tests. One of these damage models is Forming Limit Diagram (FLD).The purpose of this research is deriving required parameters for modeling damage by numerical method and using of software. To study and compare of the accuracy of this method, these parameters have been derived with experimental method. FLD parameters for metastable austenitic stainless steel 304 have been extracted from Erichsen test and then phase change from austenite to martensite during deep drawing have been modeled with CLEMEX and SIGMAPLOT software. By defining changes of physical and mechanical properties of elastic-plastic material, the obtained results are transmitted to ABAQUS via developing a VUMAT subroutine in FORTRAN. Then Erichsen test has been simulated in ABAQUS and aforementioned subroutine was used to define changes of properties in simulation. Critical points susceptible for necking in all test cups are determined and numerical FLD was drawn based on principal strains in these points. Finally, the results of this method and practical tests were compared تفاصيل المقالة