• فهرس المقالات Memristor

      • حرية الوصول المقاله

        1 - طراحی و شبیه سازی حافظه چهار ترانزیستوری و دو ممریستوری با کمترین توان مصرفی و حاصلضرب تاخیر در توان
        کرامت کرمی سید محمد علی زنجانی مهدی دولتشاهی
        ممریستور به عنوان عنصر اساسی حافظه های اصلی یا پنهان SRAM و DRAM،می تواند به صورت موثری زمان راه اندازی و توان مصرفی مدارها را کاهش دهد. غیر فرار بودن، چگالی بالای مدار نهایی و کاهش حاصل ضرب تاخیر در توان مصرفی PDp از حقایق قابل توجه مدارهای ممریستوری است که منجر به أکثر
        ممریستور به عنوان عنصر اساسی حافظه های اصلی یا پنهان SRAM و DRAM،می تواند به صورت موثری زمان راه اندازی و توان مصرفی مدارها را کاهش دهد. غیر فرار بودن، چگالی بالای مدار نهایی و کاهش حاصل ضرب تاخیر در توان مصرفی PDp از حقایق قابل توجه مدارهای ممریستوری است که منجر به پیشنهاد سلول حافظه شامل چهار ترانزیستور و دو ممریستور (4T2M) در این مقاله شده است. به منظور شبیه سازی سلول حافظه پیشنهادی، طول ممریستورها 10 نانومتر و مقاومت حالت های روشن و خاموش آنها به ترتیب 250 اهم و 10 کیلو اهم انتخاب شده است. همچنین، ترانزیستورهای MOS سلول نیز توسط مدل CMOS PTM 32 نانومتر شبیه سازی شده اند. شبیه سازی در نرم افزار اچ-اسپایس و با تغذیه یک ولت و مقایسه آن با دو سلول شش ترانزیستوری متعارف (6T) و دو ترانزیستوری-دو ممریستوری (2T2M) نشان می دهد که استفاده از ممریستور سبب غیر فرار شدن سلول حافظه پیشنهادی و سلول 2T2M در زمان قطع ولتاژ تغذیه شده است، ضمن آن که مصرف توان مدار پیشنهادی نسبت به مدار 6T و 2T2M به ترتیب 8/99 درصد و 2/57 درصد کاهش یافته و حاصل ضرب متوسط تاخیر در توان نیز به ترتیب 4/99 درصد و 7/26 درصد بهبود یافته است؛ هرچند تاخیر نوشتن این سلول و سلول 2T2Mنسبت به سلول 6T به ترتیب 400 درصد و 218 درصد افزایش یافته است. تفاصيل المقالة
      • حرية الوصول المقاله

        2 - طراحی سلول حافظه هیبریدی غیرفرار چهار ترانزیستوری و یک ممریستوری کم توان، پر سرعت با تراکم بالا
        آرش علیجانی بهزاد ابراهیمی مسعود دوستی
        ممریستور به عنوان چهارمین عنصر بنیادی بعد از مقاومت، خازن و سلف شناخته می‌شود. ممریستور به‌خاطر توان مصرفی صفر در حالت نگه داری داده و غیرفرار بودن، در آینده‌ای نزدیک می‌تواند به عنصر اساسی حافظه‌های اصلی یا پنهان دست رسی تصادفی ایستا (SRAM) یا دست رسی تصادفی پویا (DRA أکثر
        ممریستور به عنوان چهارمین عنصر بنیادی بعد از مقاومت، خازن و سلف شناخته می‌شود. ممریستور به‌خاطر توان مصرفی صفر در حالت نگه داری داده و غیرفرار بودن، در آینده‌ای نزدیک می‌تواند به عنصر اساسی حافظه‌های اصلی یا پنهان دست رسی تصادفی ایستا (SRAM) یا دست رسی تصادفی پویا (DRAM) تبدیل شود، همچنین می‌تواند به‌صورت مؤثری راندمان، سرعت، زمان راه‌اندازی و توان مصرفی مدارها را بهبود بخشد. سلول حافظه معرفی شده در این مقاله 4T1M است که با حفظ بیشترین ویژگی های 6T1M باعث کاهش مساحت اشغالی سلول شده است. به‌منظور شبیه سازی حافظه پیشنهادی، طول ممریستورها 10 نانومتر و مقاومت حالت‌های روشن و خاموش آنها به ترتیب 1 کیلو-اهم و 200 کیلو-اهم انتخاب شده است. همچنین، ترانزیستورهای MOS سلول نیز توسط مدل PTM HP CMOS 32 نانومتر شبیه سازی شده‌اند. شبیه سازی در نرم افزار اچ-اسپایس و با تغذیه 9/0 ولت و مقایسه آن با دو سلول شش ترانزیستوری مرسوم (6T) و شش ترانزیستوری-یک ممریستوری (6T1M) نشان می‌دهد که استفاده از ممریستور در سلول حافظه باعث به صفر رساندن توان مصرفی حین نگه داری داده برای مدت طولانی و کاهش مساحت اشغالی به میزان 7/36 درصد نسبت به سلول 6T1M می شود. سرعت نوشتن داده "یک" روی سلول پیشنهادی تنها 30 پیکو-ثانیه است که در مقایسه با سلول 6T1M بهبود 3 برابری را نشان می‌دهد ولی در زمان نوشتن داده صفر تغییر محسوسی مشاهده نمی‌شود. توان ایستای سلول پیشنهادی نسبت به سلول شش ترانزیستوری، 133 برابر کاهش داشته است و توان پویای آن با سلول 6T1M تفاوت ناچیزی دارد اما 60 برابر از سلول شش ترانزیستوری انرژی کمتری مصرف می کند. تفاصيل المقالة
      • حرية الوصول المقاله

        3 - طراحی یک سیستم محاسباتی نورومورفیک مبتنی بر اسپینترونیک با راندمان بالا با استفاده از مدار جانبی ردیابی جریان
        پگاه شفقی هومان فرخانی مهدی دولتشاهی همایون مهدوی نسب
        پیاده سازی یک سیستم محاسباتی عصبی (NCS) با استفاده از مدارهای دیجیتال و آنالوگ در فناوری نیم رسانای اکسید فلز مکمل (CMOS)، فضا و توان زیادی مصرف می کند. با پیشرفت تحقیقات نانو فناوری، ترکیب مدارهای اتصال تونلی مغناطیسی (MTJ) و CMOS، پیاده سازی NCSهایی با چگالی بالا ومصر أکثر
        پیاده سازی یک سیستم محاسباتی عصبی (NCS) با استفاده از مدارهای دیجیتال و آنالوگ در فناوری نیم رسانای اکسید فلز مکمل (CMOS)، فضا و توان زیادی مصرف می کند. با پیشرفت تحقیقات نانو فناوری، ترکیب مدارهای اتصال تونلی مغناطیسی (MTJ) و CMOS، پیاده سازی NCSهایی با چگالی بالا ومصرف توان پایین را امکان پذیر کرده است. با این وجود، هنوز بین کارایی مغز انسان و NCSها فاصله زیادی وجود دارد. برای کاهش این شکاف، لازم است تا مصرف انرژی و تاخیر در NCS کاهش پیدا کند. مصرف انرژی زیاد NCS، به دلیل جریان زیاد مورد نیاز برای تغییر وضعیت MTJ است. در گذشته محققان با تکنیک های ردیابی ولتاژ MTJ و قطع جریان آن بلافاصله پس از کلیدزنی MTJ، مصرف انرژی را کاهش دادند. اما به دلیل تغییرات کوچک ولتاژ پس از کلیدزنی، در این روش ها مصرف انرژی همچنان بالا است (به دلیل نیاز به تقویت کننده ها).در این مقاله روش جدیدی مبتنی بر ردیابی جریان MTJ (به جای ولتاژ آن) و قطع جریان MTJ بلافاصله پس از کلیدزنی MTJ پیشنهاد شده است. با توجه به تغییرات زیاد در جریان MTJ پس از کلیدزنی (حدود 40 درصد)، نیازی به استفاده از تقویت کننده در مدار ردیابی و قطع جریان MTJ نیست. بنابراین، مدار ردیابی ولتاژ با مدار پیشنهادی جایگزین می‌شود تا مصرف انرژی، سرعت و تاخیر NCS بهبود یابد. در تمام طراحی های گذشته، تغییرات ولتاژ در دو سر MTJ PL, FL) یا هر دو( برای تشخیص کلیدزنی MTJ استفاده شده است. در مدار پیشنهادی کلیدزنی MTJ با توجه به جریان MTJ تشخیص داده می شود و سپس جریان آن بلافاصله قطع می‌شود. بر اساس نتایج شبیه‌سازی در فناوری 65nm-CMOS مدار پیشنهادی می‌تواند، مصرف انرژی و سرعت یک NCS را به ترتیب 49 درصد و 1/2/ برابر در مقایسه با یک NCS نوعی بهبود بخشد. تفاصيل المقالة