• فهرس المقالات Hollow sphere

      • حرية الوصول المقاله

        1 - An Exact Solution for Kelvin-Voigt Model Classic Coupled Thermo Viscoelasticity in Spherical Coordinates
        S Bagheri M Jabbari
        In this paper, the classic Kelvin-Voigt model coupled thermo-viscoelasticity model of hollow and solid spheres under radial symmetric loading condition is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is prese أکثر
        In this paper, the classic Kelvin-Voigt model coupled thermo-viscoelasticity model of hollow and solid spheres under radial symmetric loading condition is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body force, and the heat source are considered in the most general forms and where no limiting assumption is used. This generality allows simulate varieties of applicable problems. At the end, numerical results are presented and compared with classic theory of thermoelasticity. تفاصيل المقالة
      • حرية الوصول المقاله

        2 - An Exact Solution for Lord-Shulman Generalized Coupled Thermoporoelasticity in Spherical Coordinates
        M Jabbari H Dehbani
        In this paper, the generalized coupled thermoporoelasticity model of hollow and solid spheres under radial symmetric loading condition (r, t) is considered. A full analytical method is used and an exact unique solution of the generalized coupled equations is presented. أکثر
        In this paper, the generalized coupled thermoporoelasticity model of hollow and solid spheres under radial symmetric loading condition (r, t) is considered. A full analytical method is used and an exact unique solution of the generalized coupled equations is presented. The thermal, mechanical and pressure boundary conditions, the body force, the heat source and the injected volume rate per unit volume of a distribute water source are considered in the most general forms and where no limiting assumption is used. This generality allows simulate varieties of applicable problems. At the end, numerical results are presented and compared with classic theory of thermoporoelasticity. تفاصيل المقالة
      • حرية الوصول المقاله

        3 - Electro-magneto-thermo-mechanical Behaviors of a Radially Polarized FGPM Thick Hollow Sphere
        A Ghorbanpour Arani J Jafari Fesharaki M Mohammadimehr S Golabi
        In this study an analytical method is developed to obtain the response of electro-magneto-thermo-elastic stress and perturbation of a magnetic field vector for a thick-walled spherical functionally graded piezoelectric material (FGPM). The hollow sphere, which is placed أکثر
        In this study an analytical method is developed to obtain the response of electro-magneto-thermo-elastic stress and perturbation of a magnetic field vector for a thick-walled spherical functionally graded piezoelectric material (FGPM). The hollow sphere, which is placed in a uniform magnetic field, is subjected to a temperature gradient, inner and outer pressures and a constant electric potential difference between its inner and outer surfaces. The thermal, piezoelectric and mechanical properties except the Poisson’s ratio are assumed to vary with the power law functions through the thickness of the hollow sphere. By solving the heat transfer equation, in the first step, a symmetric distribution of temperature is obtained. Using the infinitesimal electro-magneto-thermo-elasticity theory, then, the Navier’s equation is solved and exact solutions for stresses, electric displacement, electric potential and perturbation of magnetic field vector in the FGPM hollow sphere are obtained. Moreover, the effects of magnetic field vector, electric potential and material in-homogeneity on the stresses and displacements distributions are investigated. The presented results indicate that the material in-homogeneity has a significant influence on the electro-magneto-thermo-mechanical behaviors of the FGPM hollow sphere and should therefore be considered in its optimum design. تفاصيل المقالة
      • حرية الوصول المقاله

        4 - Stress Analysis of Magneto Thermoelastic and Induction Magnetic Filed in FGM Hallow Sphere
        حسن خادمی زاده علی قربان پور آرانی محمد سالاری
        In this paper a closed form solution for one-dimensional magnetothermoelastic problem in a functionally graded material (FGM) hollow sphere placed in a uniform magnetic field and temperature field subjected to an internal pressure is obtained using the theory of magneto أکثر
        In this paper a closed form solution for one-dimensional magnetothermoelastic problem in a functionally graded material (FGM) hollow sphere placed in a uniform magnetic field and temperature field subjected to an internal pressure is obtained using the theory of magnetothermoelasticity. Hyper-geometric functions are employed to solve the governing equation. The material properties through the graded direction are assumed to be nonlinear with an exponential distribution. The nonhomogeneity of the material in the radial directions is assumed to be power-exponential. The temperature, displacement and stress fields and the perturbation of magnetic field vector are determined and compared with those of the homogeneous case. Hence, the effect of inhomogeneity on the stresses and the perturbation of magnetic field vector distributions are demonstrated. The results of this study are applicable for designing optimum FGM hollow spheres. تفاصيل المقالة