• فهرس المقالات Ground response

      • حرية الوصول المقاله

        1 - A Numerical Evaluation of Seismic Response of Shallow Soil Deposits
        S. M. Babaee seyed mjddin Mir Mohammad Hosseinib
        This paper employs one-dimensional numerical ground response analysis models to investigate seismic response of shallow cohesive and non-cohesive soil deposits on vertical propagation of horizontal shear waves. Soil response is modelled by traditional equivalent-linear أکثر
        This paper employs one-dimensional numerical ground response analysis models to investigate seismic response of shallow cohesive and non-cohesive soil deposits on vertical propagation of horizontal shear waves. Soil response is modelled by traditional equivalent-linear (EL) frequency-domain analysis using DEEPSOIL software and nonlinear (NL) time-domain analysis using OPENSEES software. The analysis is performed on soil columns of different heights to account for depth dependency of responses. Input rock outcropping motions are selected from far-field and near-field time histories and scaled to various shaking levels to evaluate soil nonlinearity level. The results show that the shallow soil deposits have capability of amplifying the input motion considerably. Moreover, With increasing soil depth, greater damping and shifting in the dominant periods of the computed spectra occur and maximum value of spectrums increases. These results for shallow soil deposits, highlight the need to consider the full depth of the soil column to perform local ground response analysis. تفاصيل المقالة
      • حرية الوصول المقاله

        2 - Numerical Solution of Seismic Wave Propagation Equationin Uniform Soil on Bed Rock with Weighted Residual Method
        M.H. Jahangir
        To evaluate the earth seismic response due to earthquake effects, ground response analyses are used to predict ground surface motions for development of design response spectra, to compute dynamic stresses and strains for evaluation of liquefaction hazards, and to deter أکثر
        To evaluate the earth seismic response due to earthquake effects, ground response analyses are used to predict ground surface motions for development of design response spectra, to compute dynamic stresses and strains for evaluation of liquefaction hazards, and to determine the earthquake induced forces that can lead to instability of earth and earth-retaining structures. Most of the analytical solutions presented are affected by the defect that the stress-strain relationship must be of rather simple form (linear elastic, with perhaps linear hysteretic damping), and that the soil properties must be homogeneous. Real soils are often composed of several layers of variable properties, and often they exhibit non linear properties. Therefore, a numerical solution may be considered, because this can more easily be generalized to non-linear and non-homogeneous properties. In this paper, a simple numerical solution method is presented, again with damping property. The considerations will be restricted to one-dimensional wave propagation in a linear elastic layer which the equation of motion will be resolved with weighted residual method and the advantages of using this method will be ultimately discussed. Of course, the most important benefit of this element free approach is having a suitable approximated function for wave displacement in height of a soil layer. تفاصيل المقالة