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Abstract  
 
To evaluate the earth seismic response due to earthquake effects, ground response analyses are used to predict ground surface motions for 
development of design response spectra, to compute dynamic stresses and strains for evaluation of liquefaction hazards, and to determine 
the earthquake induced forces that can lead to instability of earth and earth-retaining structures. Most of the analytical solutions presented 
are affected by the defect that the stress-strain relationship must be of rather simple form (linear elastic, with perhaps linear hysteretic 
damping), and that the soil properties must be homogeneous. Real soils are often composed of several layers of variable properties, and 
often they exhibit non linear properties. Therefore, a numerical solution may be considered, because this can more easily be generalized to 
non-linear and non-homogeneous properties. In this paper, a simple numerical solution method is presented, again with damping property. 
The considerations will be restricted to one-dimensional wave propagation in a linear elastic layer which the equation of motion will be 
resolved with weighted residual method and the advantages of using this method will be ultimately discussed. Of course, the most 
important benefit of this element free approach is having a suitable approximated function for wave displacement in height of a soil layer. 

 
Keywords: Ground response, Wave propagation, Numerical solution, Weighted residual method,Element free approach. 

 
1. Introduction 
 
In recent years, the meshless or element free approaches 
have gained significant popularity. Amongst these 
diffused element methods [1], the element free Galerkin 
method [2-4] and the meshless local Petrov–Galerkin 
method have been more used than the others [5]. A major 
preference of these approaches is that an unstructured 
distribution of nodes can be used, and adaptive procedures 
introducing more nodes in regions of high error 
implemented easily. However, like the finite element 
method, the solution of unbounded domains can only be 
achieved through truncation of the domain of interest at 
some distance ‘sufficiently far’ from the region of 
interest. This led Gu and Liu [6] to develop a coupled 
element free Galerkin in boundary element method, which 
allows use of the boundary element method to model the 
far field of an unbounded domain, while the element free 
method is used in the near field. To accomplish this, an 
‘interface region’ is introduced which is effectively 
discredited with finite elements (within which the shape 
functions transition from standard shape functions on the 
boundary to element free shape functions at the edge of 
the interface region) following the approach of Krongauz 
and Belytschko [7] to the application of essential 
boundary conditions. Such an approach is somewhat 
unappealing, as it introduces an element structure which is  

*Corresponding Author Email::  jahangir@dena.kntu.ac.ir 
 

contrary to the philosophy of an ‘element free’ 
approach.The scaled boundary finite element method is a 
semi analytical method developed relatively recently by 
Wolf and Song [8-11]. The method introduces a 
normalized radial coordinate system based on a scaling 
centre and a defining curve (usually taken as the 
boundary). Shape functions are introduced in the 
circumferential direction and the weakened governing 
differential equations are solved analytically in the 
normalized radial direction. Like the boundary element 
method, discretisation of the boundary is only required, 
but unlike that method no fundamental solution is 
required. Initially derived to compute the dynamic 
stiffness matrix of unbounded domains, the method 
proved far more versatile than initially envisaged, and was 
extended to static problems and bounded domains. The 
rather complicated mathematics of the method in 
comparison with the ubiquitous finite element method 
hindered uptake of the method by other researchers. A 
virtual work derivation for elasto-statics [12] increased 
the transparency of the method considerably, lead to the 
development of stress recovery and error estimating 
procedures [13], which in turn allowed adaptive 
procedures to be implemented [14]. Using these 
procedures, direct comparison of computational cost for 
achievement of a prescribed level of accuracy was 
possible, and the method was shown to be more efficient 
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than the finite element method for problems involving 
unbounded domains. The method itself and many of the 
recent developments are described by Wolf in [15]. 
Recently a meshless Petrov–Galerkin version of the 
method has been developed [16]. A significant advantage 
of the meshless approach is that a continuous 
approximation can be obtained in the circumferential 
direction, which, coupled with the analytical solution is 
obtained in the radial direction, leads to a very smooth 
solution in which is the derivative quantities (e.g. stresses 
for elasto-static or elasto-dynamic problems) are 
continuous. Despite its advantages, the scaled boundary 
method has certain limitations. By considering the 
problems of elasto-statics, the variations in material 
properties must be scalable relative to the scaling centre, 
while the loads placed on the side faces must follow the 
power law distributions and the patch load distributions 
within the domain are not permissible, and the material 
must behave in a linear elastic manner. In problems 
involving unbounded domains, such conditions are often 
violated in the near field. To overcome this limitation, it is 
often desirable to couple the scaled boundary method with 
an alternate method to model the near field. For the scaled 
boundary finite element method, coupling with the finite 
element method is a straightforward process [17], since 
the scaled boundary finite element shape functions are 
compatible with the finite element shape functions, and no 
discontinuity occurs across the interface. Coupling a 
meshless method with another technique to model the far 
field is not straightforward, as the displacement along the 
boundary is controlled not only by the degrees of freedom 
at nodes on the boundary, but by degrees of freedom at 
nodes in the vicinity of the boundary. When the meshless 
scaled boundary method is coupled with a meshless 
method for the near field, the perfect continuity of 
displacements along the interface cannot be maintained, 
since the displacements in the unbounded scaled boundary 
domain are controlled only by degrees of freedom on the 
boundary, while displacements at the boundary in the 
meshless near field are controlled by degrees of freedom 
at all nodes in the vicinity of the boundary. This paper 
proposes a technique coupling the two approaches, while 
minimizing this problem. The method could be used 
equally as well to couple meshless methods with other 
approaches to modeling the unbounded domain, such as 
the infinite element method and the boundary element 
method. Discussions in this paper are limited to the one-
dimensional wave propagation in a linear elastic layer, 
although the techniques can easily be generalized to other 
types of engineering problems and for two or three 
dimensions. 
In this paper, an analysis is presented for the response of a 
linear elastic layer during an earthquake. The earthquake 
is supposed to be generated in the base rock underlying 
the soft soil system. The earthquake generates various 
waves in the rock, which leads to waves of vertical and 
horizontal displacements along the rock surface, 
generating compression waves and shear waves in the 

overlying soil. In earthquakes, the most important 
component usually is the wave of horizontal 
displacements at the rock surface, which generates shear 
waves in the soil. In this study, some solutions will be 
presented, mainly for a homogeneous linear elastic layer. 
The effect of hysteretic damping will also be considered. 
An important class of techniques for ground response 
analysis is also based on using the transfer functions. For 
the ground response problems, transfer functions can be 
used to express various response parameters, such as 
displacement, velocity, acceleration, shear stress, and 
shear strain, to an input motion parameter such as bedrock 
acceleration. Because it relies on the principle of 
superposition, this approach is limited to the analysis of 
linear systems. Nonlinear behavior can be approximated, 
however, using an iterative procedure with equivalent 
linear soil properties.  
The paper commences with a brief review of the weighted 
residual method, followed by a review of the wave 
propagation in uniform, damped soil on rigid rocks. Then, 
the new technique is developed, and some diagrams are 
presented illustrating the effectiveness of the approach. 
 
2. Basic equations 
2.1. Wave propagation in uniform, undamped soil on 
rigid rock 
 
One-dimensional ground response of a soil deposit is 
predominantly caused by SH-waves propagating 
vertically from the underlying bedrock. For one-
dimensional ground response analysis, the soil and 
bedrock surface are assumed to extend infinitely in the 
horizontal direction. In this manner, the returned wave 
from layer boundary will be omitted. To predict the 
ground response, the procedures based on this assumption 
have been shown which is in reasonable agreement with 
measured response in many cases. In this section, the 
propagation of horizontal vibrations in a column of soil 
generated by the vertical motion of the base rock is 
considered. As mentioned above, it is assumed that the 
problem is one dimensional in each column, with the 
displacement being a function of the vertical coordinate 
z  and time only.  
The basic differential equation is the one dimensional 
wave equation, which can be shown as follows, 
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Where, sv  is the propagation velocity of shear waves 
which is, 

/Gvs  (2) 

Where,   is the density of the soil and G  is the shear 
modulus. For the simplest case, namely that of a 
homogeneous layer with no surface load, the boundary 
condition may be supposed to be, 
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0z : 0



z
u  (3) 

and the initial condition is 
0t : 0u (4) 

The boundary condition expresses that the top of the soil 
layer (the soil surface) is free of stress and the initial 
condition states that the whole soil layer has no 
displacement at first. The vertical displacement, w  has 
been disregarded, or, to be more precise, so, it has been 
assumed that the derivative xw  / is small, compared to 

zu  / . The exact analytical solution of the problem 
defined by the equations (1), (3) and (4) is, 

)()(),( kztikzti BeAetzu    (5) 

where,   is the circular frequency of ground shaking, k  
the wave number ( sv/ ) and A  and B  the amplitudes 
of waves traveling in the z  (upward) and z  
(downward) directions, respectively. At the free surface (

0z ), the shear stress, and consequently the shear strain, 
must vanish, that is, 

0),0(),0(),0( 


 z
tuGtGt  (6) 

Substituting (5) into (6) and differentiating yields, 
0)()( )0()0(   titiikik eBAGikeBeAeGik   (7) 

which is satisfied nontrivially when BA . The 
displacement can then be expressed as 

titi
ikzikz

ekzAeeeAtzu  cos222),( 


(8) 

which describes a standing wave of amplitude kzAcos2 . 
The standing wave is produced by the constructive 
interference of the upward and downward traveling waves 
and has a fixed shape with respect to depth. Equation (8) 
can be used to define a transfer function that describes the 
ratio of displacement amplitudes at any two points in the 
soil layer. Choosing these two points to be the top and 
bottom of the soil layer gives the transfer function like 
below, 
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The modulus of the transfer function is the amplification 
function as, 

)/cos(
1)]}({Im[)]}({Re[)( 2

1
2

11
svh

FFF


  (10) 

which indicates that the surface displacement is always at 
least as large as the bedrock displacement and, at certain 
must larger? Thus )(1 F is the ratio of the free surface 
motion amplitude to the bedrock motion amplitude. As 

svh/ approaches  n2/ , the denominator of equation 
(10) approaches zero, which implies that infinite 
amplification or resonance will occur. Even, this very 
simple model illustrate that the response of a soil deposit 
is highly dependent upon the frequency of the base 
motion, and that the frequencies at which strong 

amplification occurs depend on the geometry (thickness) 
and material properties (s-wave velocity) of the soil layer. 
It should be noted that in this section, damping which is 
an essential property of soft soils, has not been taken into 
account, and that the considerations refer only to shear 
waves.  
 
2.2. Wave propagation in uniform, damped soil on 
rigid rock 
 
In real materials, one part of the elastic energy of a 
traveling wave is always converted to heat. The 
conversion is accompanied by a decrease in the amplitude 
of the wave. Viscous damping, by virtue of its 
mathematical convenience, is often used to represent this 
dissipation of elastic energy. For the purposes of 
viscoelastic wave propagation, soils are usually modeled 
as Kelvin-Voigt solids. In this paper, the stress-strain 
relationship for a kelvin- Voigt solid in shear can be 
expressed as, 

tG

  (11) 

Where,   is the shear stress,   is the shear strain, and   
is the viscosity of the material. Thus the shear stress is the 
sum of an elastic part (proportional to strain) and a 
viscous part (proportional to strain rate). 
Since damping is present in all materials, more realistic 
results can be obtained by repeating the analysis with 
damping. Assuming the soil to have the shearing 
characteristics of a Kelvin-Voigt solid, the wave equation 
can be written as, 
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The solution to this wave equation is of the form [18], 
 

)()( **

),( zktizkti BeAetzu    (13) 

Where, *k is a complex wave number with real part 1k  
and imaginary part 2k . Repeating the previous algebraic 
manipulations with the complex wave number, the 
transfer function for the case of damped soil over rigid 
rock can be expressed as, 

)/cos(
1

cos
1)( **2

svhhk
F


   (14) 

Since the frequency-independent complex shear modulus 
is given by )21(* iGG  , the complex shear wave 
velocity can be expressed as, 

)1()1()21(** 





iviGiGGv ss  (15) 

 
Then the complex wave number can be written, again for 
small , as, 
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Fig.  1.Influence of frequency on steady state response of damped, linear 

elastic layer. 
 

And finally, the amplification function can be 
simplifiedto: 
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For small damping ratios, equation (17) indicates that 
amplification by a damped soil layer also varies with 
frequency. The amplification will reach a local maximum 
whenever  nkh  2/ but will never reach a value of 
infinity since (for 0 ) the denominator will always be 
greater than zero. The frequencies that correspond to the 
 Local maxima are the natural frequencies of the soil 
deposit. The variation of amplification factor with 
frequency is shown for different levels of damping in the 
following figure. This amplification factor is also equal to 
the ratio of the free surface motion amplitude to the 
bedrock motion amplitude. As shown in Figure 1, 
damping affects the response at high frequencies more 
than lower frequencies. 
 
3. Numerical solution 
 
All the analytical solutions presented above suffer from 
the defect that the stress-strain-relationship must be of 
rather simple form (linear elastic, with perhaps linear 
hysteretic damping), and that the soil properties must be 
homogeneous. Real soils are often composed of several 
layers of variable properties, and often they exhibit non 
linear properties. Therefore a numerical solution may be 
considered, because this can more easily be generalized to 
non-linear and non-homogeneous properties. In this 
section, a simple numerical solution method is presented 
with hysteretic damping. The considerations will be 
restricted to one-dimensional problems, such as wave 
propagation in a soft layer, from a stiff deep layer to the 
ground surface. For this relatively simple class of 
problems there is a little difference between the various 
existing numerical techniques, such as finite elements, 

weighted residual method and finite differences. 
Therefore, the simplest of these methods, a weighted 
residual method which is a meshless approach in 
comparison with the others, will be used. 
 
3.1. Weighted residual method 
 
The finite element process, being the base of the weighted 
residual approximation, will seek the solution with 
numerical function in below form, 
 





n

m
mm xtNatxu

1
),(),(ˆ  (18) 

Where, mN  is the shape function prescribed in terms of 
independent variables (such as the coordinates x, t.) and 
all or most of the parameters ma are unknown, and also, 
  is the initial function that is in terms of time 
parameter. Until now, this form of approximation was 
used in the displacement approach to elasticity problems. 
Also, it is important to know that (a) the shape functions 
were usually defined locally for elements or subdomains 
and (b) the properties of discrete systems were recovered 
if the approximating equations were cast in an integral 
form. With this object in mind we shall seek to cast the 
equationfrom which the unknown parameters ma  are to be 
obtained in the integral form, 
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in which, sv  prescribe known constant that names 
propagation velocity and lw  is the weighted function of 
the residual integral which can get it equal to shape 
function. Thus, Galerkin method is used to selecting of 
the weighted function. 
 
These integral forms will permit the approximation to be 
obtained element by element and an assembly to be 
achieved by the use of the procedures developed for 
standard discrete systems, since, providing the function u  
is integral able, by using the equation (18) we have, 
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Then the approximating above equation will yield a set of 
linear equations of the below form, 

fKa  (21) 
Where, 
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and, 

   



h

tl

h t

ll dzNdtdz
t

Nf
0 00 0 2

2

 (23) 

 
Here simply, the original shape (or basis) functions are 
used as weighting.  
A further point concerning the coefficients of the matrix 
K  should be noted here. The third part, comes from 
initial condition, is symmetric but the second 
corresponding to the pure wave propagation equation is 
not and thus a system of non-symmetric equations needs 
to be solved. Furthermore, by considering the exact 
answer at analytical solution, the shape functions must be 
selected in frequenting math form. Of course, the inherent 
nature of seismic wave propagation is frequentative 
phenomena too. Thus, the trigonometric functions are the 
best choices for substituting of shaped functions. 
A computer program using the method described here 
should be used as an alternative to the analytical solution 
presented in this paper, and may be used as a basis for 
more general problems, of homogeneous layers, and 
perhaps involving non-linear soil properties. When 
comparing the results of a simple computer program with 
the analytical results it will be observed that there may be 
considerable deviations, especially for small values of 
time. This is a result of the initial condition in the 
numerical solution. It may take many cycles of vibrations 
before the numerical solution has reached the steady state 
that has been assumed in the analytical solutions. 
Actually, during a real earthquake the soil may not reach 
the steady state, and the results of a non-steady 
computation may be more realistic. 
 
3.2. Numerical example 
 
In the present section, a numerical example is 
considered,illustrating the potentialities of the proposed 
formulation. In thefirst part, the simulation of a one-
dimensional horizontal displacement is focused,and a soil 
layer is analyzed taking into account differentshape 
functions in numerical solution. In the second term, the 
amplification function can beproduced for two different 
conditions of soil layer with damping and without it. The 
results obtained by the present work formulationare 
compared with analytical answers, whenever possible, or 
withother methodologies results. 
For all results, the propagation velocity can be related to 
the shear modulus G  and the mass density   of the soil 
by the equation (2). The normal value of the shear 
modulus of sandy soil is of the order of magnitude of

GPa 30G  , and the normal value of the density is of the 
order of magnitude of 3kg/m 0017 . 
In this stage, the number of terms in total approximating 
expression for displacement is considered n=4. Thus, the 
horizontal vibration in displacement form can be 
illustrated at two points of a layer height 10m versus time 
history until to 100sec. Also, the below shape function is 
used for reduce the residual weighted integral. 
 

/2)tx).sin(kcos(kN(k)   (24) 
As shown in Fig.   2, it is obvious that for a uniform layer 
without damping property, the variation of vibration must 
be in range of united displacement because of using a 
trigonometric form instead of shape function of numerical 
solution and also the initial function that is in terms of 
time parameter, is considered as, 

)tsin(  (25) 
Thus, without considering damping factor, it was 
expected that the variation of displacement on both depth 
must be adapted on each other and this is free form height 
of soil layer 
 

 
Fig.   2. Horizontal displacement time history at the middle and bottom 

of the soft layer. 
 

According to Fig. 3, also in variation of displacement 
versus height, the periodic behavior is achieved becauseof 
selecting the sine part in shape function due to nature of 
propagation wave in soft soil. Of course, it should be 
attended that horizontal displacements at surface level for 
two different time t=10sec and t=20sec, are begun with 
various values because of periodic part of depth by using 
cosine function 
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N(k)=cos(kx).sin(kt+/2), k=4.
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Fig. 3. Horizontal displacement at any height of the soft layer for 

t=10sec and t=20sec 
 

In both above figures, all result points are adapted on the 
analytical solution of the wave equation because of its 
numerical approach in represent of response formulation 
by polynomial form. Thus, for any height and time, there 
is a approximate response by this method which is near 
the exact answer. 
 
3.3. Using different shape functions 
 
In the numerical solution, by changing the x-part uses 
sine, cosine and tangent function as an activate function; 
it would be have a better output. Of course, it should be 
attend that the other math functions can be used as 
activate function in reducing the residual integral, but due 
to nature of wave equation, it must be only used the 
periodic functions as shape function. 
The amplification is here regarded in terms of the so-
called "amplification function", which is the ratio between 
the response spectrum (for no damping) of the resulting 
motion at the surface receiver and the response spectrum 
of the input motion at the base of the profile (twice the 
incoming wave field, as would occur at a free surface of 
the same rock). Fig. 4 shows the variation of amplification 
with height of soil layer. With a glance to the shape 
function, it is understood that the amplification can vary 
with time parameter and the thickness of soil layer ( h ). 
By analytical processing, it can be found that the 
maximum value of amplification (resonance) occurs when 

  )2
1(nxk  in which  1,2,3,n  . When 1  n   in 

particular, the period of resonance is 2kx 1 , which is very 

important in seismic microzonation. Thus, when k  
becomes greater for better approximating, the period of 
resonance is became smaller and the repetition will be 
more. Hence, in Fig.   4, by changing the value of k  from 
4 to 5, this matter can be seen. 
The amplification means that the surface motion is )(F  
times greater than the motion at the base. Although Fig. 4 
suggests an infinite value of amplification at resonance, 

the reality does not cause infinite intensity of surface 
motion upon (small) motion at the base. Real soil and 
ground have many kinds of energy loss and does not 
enable such a strong motion. 
 

.  
Fig. 4. Influence of height on steady state response of undamped, linear 

elastic layer. 
 

Fig. 5 compares the spectral amplifications of ground 
motion with respect to the height, obtained by the two 
another different shape function, for the two values of k . 
As can be seen, good results are obtained by the 
maximum values are not reached at the same places at 
resonance.  
The discrepancy among the three curves is due to 
difference of shape function ratio to x parameter. The 
location of maximum amplification areas is also very 
different : in the first case, amplification is occurred in the 
smaller height, in the second case, amplification is 
happened in the middle of height in the first and third 
case, and the maximum amplification is belong to the 
third case with tangent shaped function. These results 
show the importance of suitable selecting of shape 
function proportionate to mechanical characteristics of the 
soil layers. These characteristics are mean parameters 
estimated experimentally. 
Figs. 4 and 5 indicate that the amplification of the seismic 
motion reaches a maximum value of 50 for frequencies 
between 0.196 and 0.785 of height. The highest 
amplification occurs in the tangent part of shape function 
for high frequencies, and then in the cosine part around 
smaller ones. These results are in good agreement with 
the frequency values determined analytically in section 
2.2 (equation 10). 
These results further demonstrate that the weighted 
residual method with the proposed high-order shaped 
functions is numerically accurate and stable. The 
amplification level computed with the weighted residual 
model is much higher than that estimated analytically. 
The numerical estimation of the amplification factor is 
three times higher than in the analytical case.  
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Fig. 5. Influence of height on steady state response of undamped, linear 

elastic layer. 
 

3.4. Effects of shear velocity 
 
The transfer function results for a sandy clay layer are 
shown in Fig.   6. As shown in this Fig.  , the 
amplification of the displacement amplitude takes place at 
distinct frequencies. These frequencies increase as the soil 
shear wave velocity increases. To evaluate the frequency 
characteristics of each transfer function, the frequency 
axis was also normalized using soil column frequency f, 
which was obtained from the following relationship 
analytically: 

H
vf s

4 (26) 

In the above equation, sv  is the soil shear wave velocity 
and H  is the height of soil deposit. The amplitude of soil 
displacement at low frequency was used to normalize the 
amplitude of the displacement transfer functions for all 
frequencies. 
The normalized transfer functions are shown in Fig. 7. As 
can be seen, the amplification of displacement and its 
frequency characteristics are about the same for the range 
of the shear wave velocities considered. In all cases, the 

maximum amplification takes place at the frequency 
corresponding to the soil column natural frequency. 
 

 
Fig. 6. Typical transfer functions for soil displacement amplitude. 

 
The same dynamic behavior was also observed for all soil 
elements along the height of the sandy clay layer. 
Examining the dynamic characteristics of the normalized 
displacement amplitudes (such as those shown in Fig.   7), 
it is readily evident that such characteristics are those of a 
single-degree-of freedom (SDOF) system. Each response 
begins with a normalized value of one, increases to a peak 
value at a distinct frequency, and subsequently reduces to 
a small value at high frequency. Dynamic behavior of an 
SDOF system is completely defined by the mass, 
stiffness, and associated damping constant. It is generally 
recognized that response of an SDOF system is controlled 
by stiffness at low frequency, by damping at resonant 
frequency, and by inertia at high frequencies. 
 

 
Fig. 7. Normalized transfer functions. 

 
Following the analogy for an SDOF system and to 
characterize the stiffness component, the displacement 
amplitudes at low frequencies for all soil elements were 
obtained. The displacement amplitudes at low frequency 
are almost identical for the wide range of the soil shear 
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wave velocity profiles considered, due to the long wave 
length of the scattered waves at such low frequencies. The 
shape of the normalized displacement was used as a basis 
for determining seismic soil displacement along the height 
of the embedded wall. 
 
 
 
 
3.5. Using different initial functions 
 
According to used method, the ultimate results of 
displacement are formed from two main parts, the shape 
and initial function. Despite of major effects of shape 
functions in ground response, the initial functions also 
affect on quality of initial conditions in seismic motions. 
The five different initial functions were used in Fig.   8 
compares the surface displacement ratio to layer height in 
form of time history calculated with the numerically 
obtained free field motion. Of course, in selecting of these 
functions, it must be considered that they all are 
continuous functions in term of time parameter and have 
the zero value at first of vibration in t=0. As can be seen, 
there exists an excellent agreement with changing of 
initial functions. Also, with passing time, the effects of 
initial functions will be negligible, but in one case, the 
sine initial function will has its own periodic act. 

  
Fig. 8. Variation of amplification with different of initial functions. 

 
The effects of changing initial functions can be appeared 
in variation of layer height. The numerical model allows 
the analysis of sensitivity to this parameter. By using the 
below shape function and varying the initial function , 
the variation of displacement at start of seismic motion 
can be compared with ones at sec52 t  in Fig.   9. 
(27), /2)tx).sin(kcos(kN(k)   
In comparison withthe analytical method, the numerical 
solution has no unknown coefficients and will satisfy 
initial conditions by choosing a fitting function as . 
According to Fig.   9, it will be understood that with 
applying some initial functions, the variation of 

),(/),( 21 txutxu  respect to x  parameter is approximately 

equal. But by selecting the sine or logarithmic functions 
as , the abovementioned expression changes periodic 
form by different period value. Of course in analytical 
solution, it can rewrite as below form that can be varied in 
periodic shape respect to distance x . 
 

)(

2

1 21

),(
),( ttietxu

txu   . (28) 

 
 

  
Fig. 9. Variation of displacement ratio to two different time with 

changing the initial functions. 
  
 

4. Amplification function with damping 
 
Numerical solution of amplification function for fixed 
values of equivalent stiffness and damping ratio is plotted 
in Fig.   10. In this Fig.  , the variation of amplification 
function versus height of soil layer is shown by two 
different shape functions such as below forms: 

t).cos(k)x)k(x)(kinsN(k) 0.322  ( (29) 
and, 

/2)t.sin(k)x)k(x)(kN(k) 0.322  (cos  (30) 
 

Hence, by changing the above functions in numerical 
solution, with a fixed value for damping ratio of 05.0 , 
the amplification of displacement transforms from large 
range values to zero variation by increasing in height of 
layer, and with using the higher coefficient k  in shape 
functions, the values of periodic height will be reduced. 
Thus, it is found that changes in shape functions do not 
affectamplified responses. 
As shown in Fig. 10, the amplification of the 
displacement amplitude takes place at distinct 
frequencies. The first peak value is called the peak 
amplification Ap and the corresponding frequency which 
the predominant frequency vp. So, how would changes in 
stiffness and damping affect this amplification function? 
Parametric study of dependency of the predominant 

0 1 2 3 4 5
0.99988

0.9999

0.99992

0.99994

0.99996

0.99998

1     

1.00002 

Influence of Initial function on response of undamped soil

u(
x=

0,
t)

/u
(x

=H
,t

)

T ime (t)

u =  + Nmam

 

 

 =t2

 =sin(t)

 =sinh0.7(t)

 =log(t+1)

 =exp(t)-1

0 2 4 6 8 10
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Influence of Initial function on response of undamped soil

u(
x,

t=
0)

/u
(x

,t
=t

2)

Distance (x)

 

 

 =t2

 =sin(t)

 =sinh0.7(t)

 =log(t+1)

 =exp(t)-1



Journal of Structural Engineering and Geotechnics, 2 (2), 29-38, Summer 2012 

37 
 

frequency vp and the peak amplification Ap on equivalent 
stiffness and damping ratio is plotted in Fig.   11 for the 

fixed shape function. 
 

. 
 

  
Fig. 10. Numerical solution of amplification function with damping ratio by different shape function N(k).

 
 
 

  
Fig. 11. Variation of amplification function by changing damping ratio 

  
In Fig. 11 the peak amplification is plotted versus the 
height of the layer. The following conclusions can be 
drawn from this plot: 
1. The peak amplification decreases when the height of 
the layer increases. 
2. For smaller values of damping, the peak amplification 
increases faster than for larger ones. 
The general important conclusion can be known by 
comparing Fig.  s 10 and 11: 
For smaller values of the coefficient k  in shape function, 
the peak amplification increases slower than for larger 
ones. 
At very small strains, where the values of damping are 
small and values of stiffness are large, the peak 
amplification is more sensitive to errors in damping 
prediction than in the coefficient k  in shape function. 

 
However, for the lowest attenuation value, the 
discrepancy between damped and undamped curves is not 
very large. Near the so-called resonance of the soil layer, 
the influence of damping on amplification can be very 
strong for high attenuation values. For both frequencies, 
there is still no significant effect on the location of the 
peaks. 
 
5. Conclusion 
 
All numerical approaches to solve the differential 
equations use approximations to the exact calculus 
expressions. These approaches typically substitute an 
approximate formula that can be used to estimate some 
quantity such as a derivative or integral that cannot be 
found by conventional methods. In the solution of partial 
differential equations, the approaches convert the 
differential equation and boundary conditions into a set of 
simultaneous linear or nonlinear algebraic equations. As 
the process always leads to equations which, being of 
integralforms can be obtained by summation of 
contributions from various sub domains, we decided to 
embrace all weighted residual approximations under the 
name of generalized finite element method. In this study, 
the weighted residual method is used to solve numerically 
the wave propagation equation in uniformed soil layer on 
rigid rock. In the paper, we have discussed how 
approximate solutions can be obtained by using an 
expansion of the unknown function in terms of trial or 
shape functions. Further, we have stated the necessary 
conditions that such functions have to fulfill so that the 
various integrals could be evaluated over the domain. 
Numerical simulations based on the weighted residual 
method allow a precise description of the site as well as 
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an accurate analysis of seismic wave propagation within 
the linear elastic layer. Amplification levels and occurring 
frequencies are of the same order as the experimental 
values.  
Site effects quantified numerically are sensitive to 
incidence. It changes the maximum amplification factor, 
the frequency at which it occurs and the corresponding 
location. The influence of damping on amplification is 
also large. Two types of interpretation of this strong 
influence could be proposed: the first one in terms of 
vibration and resonance considering that the influence of 
damping near the resonance of a system is large, the 
second one in terms of wave propagation taking into 
account the multiple wave reflections in the soil layer 
increasing consequently the effect of damping. 
To improve the weighted residual method, two main 
points should be emphasized: the description of the 
different shape functions with variable soil characteristics 
and the influence of their respective damping features. 
These two points may lead to a better understanding of 
seismic site effects and allow more detailed comparisons 
between experimental and numerical results. 
Nevertheless, the experimental determination of dynamic 
mechanical properties is often difficult (costly, many 
different methods (cyclic, dynamic...), scattered values) 
especially when analyzing their distribution with both 
depth and time along a complete geological profile. 
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