پپتیدهای ضد میکروبی : امیدی تازه در مقابله با گونه های استافیلوکوکوس مقاوم به آنتی بیوتیک های رایج
محورهای موضوعی : میکروبیولوژی
1 - گروه میکروبیولوژی، واحد شهرقدس، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: استافیلوکوکوس , مقاومت آنتی بیوتیکی , پپتیدهای ضد میکروبی , بیوفیلم,
چکیده مقاله :
گونههایی از استافیلوکوکوس مانند استافیلوکوکوس اورئوس، استافیلوکوکوس اپیدرمیدیس و استافیلوکوکوس ساپروفیتیکوس از اهمیت بالینی قابل توجهی برای انسان برخوردارند. ایزولههای استافیلوکوکوس اورئوس عموماً در برابر بتالاکتامهای معمولی مقاومت نشان میدهند و بسیاری از آنها در برابر پنیسیلینهای مقاوم به بتالاکتاماز نیز مقاومت ایجاد کردهاند. علاوه بر این، این سویهها اغلب حامل ژنهای مقاومتی هستند که ایمنی را در برابر آنتیبیوتیکهای MLS که شامل ماکرولیدها، لینکوزامیدها و استرپتوگرامینها هستند، ایجاد میکنند. در دهه 1950، سویههای استافیلوکوکوس اورئوس مقاوم به آمینوگلیکوزیدها شروع به ظهور کردند. اخیراً، مقاومت به کینولونها در بین سویههای مقاوم به متیسیلین از طریق جهشهای کروموزومی به سرعت افزایش یافته است. پپتیدهای ضدمیکروبی (AMPs) مورد بررسی در این مطالعه از جمله پپتید β دفنسین-1 انسانی ، β دفنسین-3 انسانی، استافیلوکوکسین، لوگدونین، WR12 ، D-IK8 و Tet21 به عنوان یک کلاس جدید امیدوارکننده از آنتیبیوتیکها شناخته میشوند که در درجه اول به غشای سلولی باکتری آسیب می زنند. مطالعه در مورد AMPها به دلیل نیاز مبرم به عوامل ضدمیکروبی جدید انجام میشود. با توجه به مکانیسم عمل آنها که غشای سلولی را هدف قرار میدهند، AMPها نویدبخش کاربردهای درمانی هستند. برخی از AMPهای طبیعی نیز ممکن است در برابر این عوامل بیماریزا اثربخشی نشان دهند و میتوانند به طور بالقوه به صورت همافزایی با آنتیبیوتیکهای سنتی مورد استفاده قرار گیرند
Species of Staphylococcus such as S.aureus, S.epidermidis and S.saprophyticus are of significant clinical relevance to humans. Staphylococcus aureus isolates universally exhibit resistance to conventional beta-lactams and many have developed resistance to beta-lactamase-resistant penicillins as well. Additionally, these strains often carry resistance genes that confer immunity to MLS antibiotics, which include macrolides, lincosamides and streptogramins. In the 1950s, strains of Staphylococcus aureus resistant to aminoglycosides began to appear. More recently, resistance to quinolones has rapidly increased among methicillin-resistant strains through chromosomal mutations. The antimicrobial peptides (AMPs) investigated in this study, including human β-defensin-1 peptide, human β-defensin-3, staphylococcin, logdonin, WR12, D-IK8, and Tet21, are recognized as a promising new class of antibiotics that primarily disrupt the bacterial cell membrane.The exploration of AMPs is driven by the critical need for novel antimicrobial agents. Due to their mechanism of action targeting the cell membrane, AMPs hold considerable promise for therapeutic applications. Some naturally occurring AMPs may also demonstrate efficacy against these pathogens and could potentially be used synergistically with traditional antibiotics.
1. Yamazaki Y, Ito T, Tamai M, SN& YN. The role of Staphylococcus aureus quorum sensing in cutaneous and systemic infections. Springer Nat. 2024;44(9). doi:10.1038/s41387-024-00299-x
2. Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, Costa FB, Nakazato G, WAV RC. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Natl Libr Med. 2025;14(2). doi:10.1016/j.nmni.2025.102225
3. Olearo F, Schoppmeier CP, Both A, Citak M, Maschkowitz G, Schubert S, et al. Is the isolation of S. epidermidis from pre-operative synovial fluid culture a predictor of S. epidermidis prosthetic joint infection? Eur J Clin Microbiol Infect Dis. 2025;44:1147–54. doi:10.1007/s10096-025-04867-0
4. Djawadi B, NH and MM. UTI Caused by Staphylococcus saprophyticus. IntechOpen; 2023. doi:10.5772/intechopen.112345
5. Esmaili D. Microbiology book. In: microbiology book. Chapter eight. 2014. *(کتاب، DOI ندارد)*
6. Ebrahimzadeh Namvar A, Bastarahang S, Abbasi N, Sheikhi Ghehi G, Farhadbakhtiarian S, Arezi P, et al. Clinical characteristics of Staphylococcus epidermidis: a systematic review. GMS Hyg Infect Control. 2014;9(3). doi:10.3205/dgkh000243
7. Chen XW, Chen HQ, Wu JH, Wang ZH, Zhou YQ, ST. Isoniazid potentiates tigecycline to kill methicillin-resistant Staphylococcus aureus. Emerg Microbes Infect. 2024. doi:10.1080/22221751.2024.2349971
8. Rasmi AH, Ahmed EF, AMAD& GFMG. Virulence genes distributed among Staphylococcus aureus causing wound infections and their correlation to antibiotic resistance. Springer Nat. 2022;22(652). doi:10.1038/s41598-022-10289-7
9. Vittorakis E, Vică ML, Zervaki CO, Vittorakis E, Maraki S, Mavromanolaki VE, et al. Examining the Prevalence and Antibiotic Susceptibility of S. aureus Strains in Hospitals: An Analysis of the pvl Gene and Its Co-Occurrence with Other Virulence Factors. Microorganisms. 2023;11(4). doi:10.3390/microorganisms11040876
10. Lyon BR, Skurray R. Antimicrobial Resistance of Staphylococcus aureus: Genetic Basis. Microbiol Rev. 1987;51:88–134
11. Martineau F, Picard FJ, Lansac N, Ménard C, Roy PH, Ouellette M. Correlation between the Resistance Genotype Determined by Multiplex PCR Assays and the Antibiotic Susceptibility Patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother. 2000;44(2). doi:10.1128/AAC.44.2.231-238.2000
12. de Paiva-Santos W, de Sousa VS, MG. Occurrence of virulence-associated genes among Staphylococcus saprophyticus isolated from different sources. Microb Pathog. 2019;11(9):9–11. doi:10.1016/j.micpath.2019.103543
13. Mortimer TD, Annis DS, O'Neill MB, Bohr LL, Smith TM, Poinar HN, et al. Adaptation in a Fibronectin Binding Autolysin of Staphylococcus saprophyticus. ASM Journals. 2017;2(6). doi:10.1128/mSphere.00372-17
14. Phitaktim S, Chomnawang M, Sirichaiwetchakoon K, Dunkhunthod B, GH& GE. Synergism and the mechanism of action of the combination of α-mangostin isolated from Garcinia mangostana L. and oxacillin against an oxacillin-resistant Staphylococcus saprophyticus. Springer Nat. 2016;16(195). doi:10.1186/s12906-016-1184-z
15. Nazli A, Tao W, You H, XH and YH. Treatment of MRSA Infection: Where are We? Curr Med Chem. 2024;31(28). doi:10.2174/0109298673289451240513055825
16. Shields KE, Ranava D, Tan Y, Zhang D, M-NFY. Epitranscriptional m6A modification of rRNA negatively impacts translation and host colonization in Staphylococcus aureus. PLoS Pathog. 2024. doi:10.1371/journal.ppat.1012345
17. Arya SSP. A Cell-Based Screening Assay for rRNA-Targeted Drug Discovery. ACS Publ. 2024;10(12). doi:10.1021/acssynbio.4c00321
18. Schito GC. The importance of the development of antibiotic resistance in Staphylococcus aureus. Clin Microbiol Infect. 2006;12 Suppl 1:3-8. doi:10.1111/j.1469-0691.2006.01343.x
19. Kanwar SS, Vicky, Kumari V, Sharma S, SA. Oral Microbiome and Drug Resistance. oral microbiome. 2025;23. doi:10.1016/j.om.2025.100123
20. Panda AC, Siva S. DNA Gyrase as a Target for Quinolones. Biomedicines. 2023;11(2). doi:10.3390/biomedicines11020546
21. Cao Q, ZXLLLJLSL. Current Landscape and Future Perspective of Oxazolidinone Scaffolds Containing Antibacterial Drugs. ACS Publ. 2021;64(15). doi:10.1021/acs.jmedchem.1c00985
22. Askari E, Soleymani F, Arianpoor A, Tabatabai SM, Amini A, MN. Epidemiology of mecA-Methicillin Resistant Staphylococcus aureus (MRSA) in Iran: A Systematic Review and Meta-analysis. Iran J Basic Med Sci. 2012;15(5):1010–9. doi:10.22038/IJBMS.2012.5015
23. Sarrou S, Malli E, Tsilipounidaki K, Florou Z, Medvecky M, Skoulakis A, et al. MLSB-Resistant Staphylococcus aureus in Central Greece: Rate of Resistance and Molecular Characterization. Microb Drug Resist. 2019;25(4). doi:10.1089/mdr.2018.0200
24. Sabzehali F, Goudarzi M, Goudarzi H, HA. Distribution of Aminoglycoside Resistance Genes in Coagulase-Negative Staphylococci Isolated From Hospitalized Patients. Arch Pediatr Infect Dis. 2017;5(3). doi:10.5812/pedinfect.1407
25. Huang H, Xie Y, Zhong J, Fu Z, Wu P, Chen X, et al. Antimicrobial peptides loaded collagen nanosheets with enhanced antibacterial activity, corneal wound healing and M1 macrophage polarization in bacterial keratitis. Compos Part B Eng. 2024;2(75):111–283. doi:10.1016/j.compositesb.2024.111283
26. Anand AA, Amod A, Anwar S, Sahoo AK, further author information V, Sethi G, et al. A comprehensive guide on screening and selection of a suitable AMP against biofilm-forming bacteria. Crit Rev Microbiol. 2023;50(5). doi:10.1080/1040841X.2023.2292079
27. Fan L, Sun J, Zhou M, Zhou J, Lao X, Zheng H, et al. DRAMP: a comprehensive data repository of antimicrobial peptides. Sci Rep. 2016;6:24482. doi:10.1038/srep24482
28. Oyama LB, Olleik H, Teixeira ACN, Guidini MM, Pickup JA, Hui BYP, et al. In silico identification of two peptides with antibacterial activity against multidrug-resistant Staphylococcus aureus. npj Biofilms Microbiomes. 2022;8(1):58. doi:10.1038/s41522-022-00318-8
29. Joo HS, MO. Mechanisms of resistance to antimicrobial peptides in staphylococci. Biochim Biophys Acta Biomembr. 2015;1848(11 Pt B):3055–61. doi:10.1016/j.bbamem.2015.02.009
30. Lei XL, Li Y, Cheng XT, Zhuang J, FZ. Specifically targeted antimicrobial cyclic peptide to staphylococcal protein A for the treatment of S. aureus infection. Elsevier. 2025. doi:10.1016/j.biomaterials.2025.122456
31. Kumaresan V, Kamaraj Y, SS& GP. Understanding the Dynamics of Human Defensin Antimicrobial Peptides: Pathogen Resistance and Commensal Induction. Springer Nat. 2024;196:6993–7024. doi:10.1007/s00253-024-13242-y
32. Brdová D, Ruml T, Viktorová J. Mechanism of staphylococcal resistance to clinically relevant antibiotics. Elsevier. 2024;77. doi:10.1016/j.tim.2024.03.009
33. Bastos MCDF, de Farias FM, PCF& MLVC. Staphylococcins: an update on antimicrobial peptides produced by staphylococci and their diverse potential applications. Appl Microbiol Biotechnol. 2020;104:10339–68. doi:10.1007/s00253-020-10998-x
34. Newstead LL, Varjonen K, TN and GKPGKP. Staphylococcal-Produced Bacteriocins and Antimicrobial Peptides: Their Potential as Alternative Treatments for Staphylococcus aureus Infections. Antibiotics (Basel). 2020;9(2). doi:10.3390/antibiotics9020080
35. Reetz L, Schulze L, Kronenberger T, Selim KA, Schaefle T, Dema T, et al. The human microbiome-derived antimicrobial lugdunin self-regulates its biosynthesis by a feed-forward mechanism. ASM Journals. 2025;16(4). doi:10.1128/mbio.03588-24
36. Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D, Weidenmaier C, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016;535(7613):511–6. doi:10.1038/nature18634
37. Mohamed MF, AA& MNS. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Sci Rep. 2016;6:29707. doi:10.1038/srep29707
38. Yuan Z, Kang J, Wu S, Dong A, RW. Advances in Antimicrobial Peptide-Based Biomaterials for Combating Multidrug-Resistant Bacterial Infections. Macromol Rapid Commun. 2025. doi:10.1002/marc.202500123
39. Kim JS, Lim MC, S-MK& J-YL. Extracellular matrix-degrading enzymes as a biofilm control strategy for food-related microorganisms. Food Sci Biotechnol. 2023;32:1745–61. doi:10.1007/s10068-023-01378-y
40. Komatsuzawa H, MN-TLK-MK-M. Efficiency of Antimicrobial Peptides Against Multidrug-Resistant Staphylococcal Pathogens. Front Microbiol. 2022;13:1023756. doi:10.3389/fmicb.2022.1023756
41. Gao X, Ding J, Liao C, Xu J, Liu X, Lu W. Defensins: the natural peptide antibiotic. Adv Drug Deliv Rev. 2021;179:114008. doi:10.1016/j.addr.2021.114008
42. Du H, Puri S, McCall A, Norris HL, Russo T, Edgerton M. Human salivary protein Histatin 5 has potent bactericidal activity against ESKAPE pathogens. Front Cell Infect Microbiol. 2017;7:41. doi:10.3389/fcimb.2017.00041
43. O'Sullivan JN, O'Connor PM, Rea MC, O'Sullivan O, Walsh CJ, Healy B, et al. A novel natural nisin variant, is produced by Staphylococcus capitis sourced from the human skin microbiota. J Bacteriol. 2020;202(14):e00112-20. doi:10.1128/JB.00112-20
44. Nakazono K, Le MNT, Kawada-Matsuo M, Kimheang N, Hisatsune J, Oogai Y, et al. Complete sequences of epidermin and nukacin encoding plasmids from oral-derived Staphylococcus epidermidis and their antibacterial activity. PLoS One. 2022;17(10):e0275628. doi:10.1371/journal.pone.0275628
45. Watanabe A, Kawada-Matsuo M, Le MNT, Hisatsune J, Oogai Y, Nakano Y, et al. Comprehensive analysis of bacteriocins in Streptococcus mutans. Sci Rep. 2021;11(1):12963. doi:10.1038/s41598-021-92289-7