طراحي نواحي مجزاي اندازهگيري با رويکرد کاهش هزينه و کاهش نشت در شبکههاي توزيع آب
محورهای موضوعی : مدیریت منابع آبمحمد کاکش پور 1 , محمدرضا جلیلی قاضی زاده 2 * , سید عباس حسینی 3 , احمد شرافتی 4
1 - گروه عمران، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
2 - گروه عمران، آب و محیطزیست، دانشگاه شهید بهشتی، تهران، ایران.
3 - گروه عمران، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
4 - گروه عمران، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
کلید واژه: نواحي مجزاي اندازهگيري, شبکه توزيع آب, SPEA2, نشت, مديريت فشار ,
چکیده مقاله :
زمينه و هدف: براي تخمين مقدار نشت در شبکه توزيع آب، انجمن بينالمللي آب اندازهگيري مقدار جريان شبانه با استفاده از ايجاد نواحي مجزاي اندازهگيري (DMA1) را توصيه مي کند. از طرفي ايجاد اين نواحي براي شبکه هاي موجود و قديمي بايد با در نظر گرفتن عواملي از قبيل به حداقل رساندن لولههاي مرزي بين نواحي، کمترين هزينه ايجاد نواحي و همچنين بررسي تأثير ايجاد نواحي برهيدروليک شبکه و ازجمله اثرگذاري بر ميزان نشت انتخاب گردد. بهعبارتديگر، طرح انتخابي به لحاظ هندسه، تعداد نواحي و همچنين شرايط مرزي بين نواحي بايد بهصورت بهينه محاسبه و انتخاب گردد. همچنين با توجه به تأثير انتخاب الگوريتم دو هدفه بر نتايج بهينهسازي، براي اولين بار نتايج الگوريتمهاي دو هدفه در ايجاد نواحي منطقهسنجي مقايسه شده است. براي انتخاب بهترين الگوريتم بهينه سازي در بخش پارتيشن بندي فيزيکي از الگوريتم هاي NSGAII، MOGWO، SPEA2 و MOPSO استفاده شد و نتايج نشان داد که الگوريتم SPEA2 بهتر از ساير الگوريتمها عمل ميکند. سپس با بررسي نتايج ايجاد نواحي اندازه گيري مجزا با تغيير تعداد و هندسه نواحي در شبکه، وضعيت بهينه نواحي با توجه به دو هدف بهينه سازي و همچنين شاخص هايي مانند فشردگي و مقادير فشار گرهي محاسبه شده و طرح پيشنهادي انتخاب شد. روش پژوهش: در تحقيق حاضر يک روش جديد جهت ايجاد نواحي مجزاي اندازهگيري در شبکه توزيع آب موجود با رويکردهاي کاهش هزينه و کاهش نشت ارائهشده است. ايجاد نواحي با اين دو رويکرد کمتر در تحقيقات گذشته مورد بررسي قرار گرفته است. اين روش شامل مراحل خوشهبندي، ناحيهبندي فيزيکي و همچنين تجزيهوتحليل نتايج است. روش ارائه شده بر روي شبکه توزيع آب زدجي در کشور چين بکار گرفته شد. همچنين با توجه به اثرگذاري انتخاب الگوريتم دو هدفه بر نتايج بهينهسازي براي اولين بار به مقايسه نتايج الگوريتمهاي دو هدفه در ايجاد نواحي مجزاي اندازهگيري پرداخته شده است. جهت انتخاب بهترين الگوريتم بهينهسازي در بخش ناحيهبندي فيزيکي از الگوريتمهاي NSGAII2، MOGWO3، SPEA24، MOPSO5 استفاده شد که نتايج نشان داد الگوريتم SPEA2 نسبت به ساير الگوريتمها عملکرد بهتري داشته است. سپس با بررسي نتايج ايجاد نواحي مجزاي اندازهگيري با تغيير تعداد و هندسه نواحي در شبکه، حالت بهينه نواحي با توجه به دو هدف بهينهسازي و همچنين شاخصهايي نظير پيمانگي و مقادير فشار گرهاي مورد محاسبه قرار گرفت و طرح پيشنهادي انتخاب گرديد. يافتهها: نتايج نشان داد که با انتخاب بهينه تعداد وهندسه نواحي با روش ارائه شده، ميزان انحراف معيار فشار گرهي شبکه 8/14 درصد و ميزان نشت گرهي شبکه 8/5 درصد نسبت به حالت بدون ايجاد نواحي مجزاي اندازهگيري کاهشيافته است. درواقع ايجاد نواحي علاوه بر کنترل نشت در شبکه، موجب مديريت فشار و کاهش نشت در شبکه گرديده است. نتايج: روش ارائه شده ضمن ايجاد نواحي مجزاي اندازهگيري با کمترين هزينه، ميزان نشت و انحراف معيار فشار گرهي در شبکه را نيز کاهش داده است که به ايجاد عدالت توزيع آب در شبکه کمک ميکند. همچنين الگوريتم دو هدفه SPEA2 بهعنوان الگوريتم برتر از بين چهار الگوريتم بررسيشده جهت ايجاد نواحي مجزاي اندازهگيري پيشنهاد مي گردد.
Background and Aim: To estimate the rate of leakage in the water distribution networks, the International Water Association recommends measuring the rate of night flow by creating District-Metered Areas (DMAs). However, in creating DMAs, especially for the existing and old WDNs, minimizing the boundary pipes between the DMAs, leakage, cost, and stable hydraulics should be taken into account. The layout should be optimally designed regarding geometry and the optimum number. In this study, the results of two-objective algorithms have been compared in creating DMAs. NSGAII, MOGWO, SPEA2, and MOPSO algorithms are used to select the best optimization algorithm in the physical partitioning. The results showed that the SPEA2 algorithm performs better than other algorithms. By examining the creation of different DMAs by changing the number and geometry of the areas in the networks, the optimal case of the areas was calculated according to two optimization goals, as well as different indicators such as modularity and nodal pressure values. Methods: This study presents a new method to create DMAs in the existing water distribution network with cost and leakage reduction approaches. The creation of areas with these two approaches has yet to be investigated in past studies. This method includes the phases of clustering, physical partitioning, and analysis of the results. The presented method was used on the ZJ water distribution network in China. Also, the results of the two-objective algorithms have been compared for the first time in creating DMAs. Results: The results showed that the standard deviation of the nodal pressure of the network has decreased by 14.8% and the nodal leakage rate of the network by 5.8% compared to the case without creating DMAs. In addition to controlling leakage in the network, the creation of DMAs has led to pressure management and leakage reduction in the water distribution network. Conclusion: The presented method creates DMAs with the lowest cost and rate of leakage and pressure control in helping justice of the water distribution network. Also, the SPEA2 two-objective algorithm is suggested as the best algorithm for creating DMAs among the four reviewed algorithms.
Bader, D. A., Meyerhenke, H., Sanders, P., & Wagner, D. (2013). Graph partitioning and graph clustering (Vol. 588). American Mathematical Society Providence, RI.
Bianchotti, J. D., Denardi, M., Castro-Gama, M., & Puccini, G. D. (2021). Sectorization for water distribution systems with multiple sources: A performance indices comparison. Water, 13(2), 131.
Bui, X. K., Marlim, M. S., & Kang, D. (2021). Optimal design of district-metered areas in a water distribution network using coupled self-organizing map and community structure algorithm. Water, 13(6), 836.
Coello, C. C., & Lechuga, M. S. (2002). MOPSO: A proposal for multiple objective particle swarm optimization. Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600),
Creaco, E., & Haidar, H. (2019). Multiobjective optimization of control valve installation and DMA creation for reducing leakage in water distribution networks. Journal of Water Resources Planning and Management, 145(10), 04019046.
Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Parallel Problem Solving from Nature PPSN VI: 6th International Conference Paris, France, September 18–20, 2000 Proceedings 6,
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
Eliades, D. G., Kyriakou, M., Vrachimis, S., & Polycarpou, M. M. (2016). EPANET-MATLAB toolkit: An open-source software for interfacing EPANET with MATLAB. Proc. 14th International Conference on Computing and Control for the Water Industry (CCWI),
Ferrari, G., & Savic, D. (2015). Economic performance of DMAs in water distribution systems. Procedia Engineering, 119, 189-195.
Gopan, A. (2010). Pressure control for leakage minimization in water distribution network.
Kakeshpour, M., Jalili Ghazizadeh, M. R., Hoseyni, S. A., & Sharafati, A. (2023). Creating Districted Metered Areas in the Water Distribution Network Using Optimal Selection Indexes. Journal of Water and Wastewater Science and Engineering[In Persian].
Laucelli, D. B., Simone, A., Berardi, L., & Giustolisi, O. (2017). Optimal design of district metering areas for the reduction of leakages. Journal of Water Resources Planning and Management, 143(6), 04017017.
Liu, J., & Han, R. (2018). Spectral clustering and multicriteria decision for design of district metered areas. Journal of Water Resources Planning and Management, 144(5), 04018013.
Liu, J., & Lansey, K. E. (2020). Multiphase DMA design methodology based on graph theory and many-objective optimization. Journal of Water Resources Planning and Management, 146(8), 04020068.
Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.
Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. d. S. (2016). Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert systems with applications, 47, 106-119.
Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical review E, 69(2), 026113.
Pearson, D. (2019). Standard Definitions for Water Losses. IWA Publishing London, UK.
Rahmani, F., Muhammed, K., Behzadian, K., & Farmani, R. (2018). Optimal operation of water distribution systems using a graph theory–based configuration of district-metered areas. Journal of Water Resources Planning and Management, 144(8), 04018042.
Rossman, L. A. (2000). EPANET 2: users manual.
Saldarriaga, J., Bohorquez, J., Celeita, D., Vega, L., Paez, D., Savic, D., Dandy, G., Filion, Y., Grayman, W., & Kapelan, Z. (2019). Battle of the water networks district metered areas. Journal of Water Resources Planning and Management, 145(4), 04019002.
Saldarriaga, J., Páez, D., Bohórquez, J., Páez, N., París, J. P., Rincón, D., Salcedo, C., & Vallejo, D. (2016). Rehabilitation and leakage reduction on C-town using hydraulic criteria. Journal of Water Resources Planning and Management, 142(5), C4015013.
Sugishita, K., Abdel-Mottaleb, N., Zhang, Q., & Masuda, N. (2021). A growth model for water distribution networks with loops. Proceedings of the Royal Society A, 477(2255), 20210528.
Zeidan, M., Li, P., & Ostfeld, A. (2021). DMA segmentation and multiobjective optimization for trading off water age, excess pressure, and pump operational cost in water distribution systems. Journal of Water Resources Planning and Management, 147(4), 04021006.
Zhang, Q., Wu, Z. Y., Zhao, M., Qi, J., Huang, Y., & Zhao, H. (2017). Automatic partitioning of water distribution networks using multiscale community detection and multiobjective optimization. Journal of Water Resources Planning and Management, 143(9), 04017057.
Zhang, T., Yao, H., Chu, S., Yu, T., & Shao, Y. (2021). Optimized DMA partition to reduce background leakage rate in water distribution networks. Journal of Water Resources Planning and Management, 147(10), 04021071.
Zhou, H., Liu, Y., Yao, H., Yu, T., & Shao, Y. (2022). Comparative Analysis on the DMA Partitioning Methods Whether Trunk Mains Participated. Water, 14(23), 3876.
Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. TIK report, 103.
Zitzler, E., & Thiele, L. (1998). An evolutionary algorithm for multiobjective optimization: The strength pareto approach. TIK report, 43.
_||_