مدلسازی پراکنش ماده آلی خاک با استفاده از سنجش از دور و مدل جنگل تصادفی و کریجینگ در شهرستان لنجان
محورهای موضوعی : مباحث نوین در فیزیک خاکفاطمه شیرانی تبار 1 , مژگان احمدی ندوشن 2 *
1 - دانشجوی کارشناس ارشد آلودگی محیط زیست، گروه محیط زیست، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران.
2 - استادیار، گروه محیط زیست، مرکز تحقیقات پسماند و پساب، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران.
کلید واژه: کریجینگ, کربن آلی خاک, مدل جنگل تصادفی, تصاویر ماهواره ای سنتینل-2, رگرسیون کاربری اراضی,
چکیده مقاله :
زمینه و هدف: خاک یکی از منابع طبیعی بسیار مهم است که تامین بیش از 97 درصد نیازهای غذایی بشر را به عهده دارد. ماده آلی خاک یکی از فاکتورهای مهم کیفی خاک است که بر ویژگی های فیزیکی، شیمیایی و زیستی خاک تاثیر زیادی دارد. مدلسازی و تهیه نقشه ویژگیهای خاک برای بسیاری از کاربردهای محیط زیستی، اقلیمی، اکولوژیکی و هیدرولوژیکی ضروری است. هدف این مطالعه مدلسازی پراکنش ماده آلی و کربن آلی خاک با استفاده از تصاویر ماهواره ای سنتینل 2 و مدل جنگل تصادفی و کریجینگ در شهرستان لنجان است.روش پژوهش: در این مطالعه ، نقشههای رقومی چهار پارامتر اصلی خاک شامل کربن آلی خاک، مواد آلی خاک، هدایت الکتریکی و اسیدیته خاک با استفاده از روش جنگل تصادفی و کریجینگ در محدوده شهرستان لنجان تهیه شد. براساس واحدهای زمینی همگن، در مجموع 110 نقطه در محدوده منطقه مورد مطالعه تعیین و از عمق 0 تا 30 سانتی متری سطح خاک در این نقاط اقدام به نمونه برداری شد. نمونه برداری در تیرماه 1400 انجام گرفته و تصاویر ماهواره ای سنتینل-2 نیز از همین ماه دریافت شد زیرا در این ماه به علت ابر کمتر و افزایش بازتاب مستقیم از سطح خاک، اطلاعات بهتری دسترس قرار می گیرد. به علاوه از 16 متغیر محیطی تاثیرگذار بر پراکنش پارامترهای خاک استفاده شد. متغیرهای کمکی مختلف از جمله NDVI، NDWI، DEM، Slope که همگی به صورت مستقیم یا غیر مستقیم از تصاویر ماهواره ای استخراج شده بود برای پیش بینی استفاده شد.یافتهها: نقشه های به دست آمده از روش جنگل تصادفی از صحت بسیار بهتری نسبت به روش کریجینگ برخوردار بوده است. نقشهی پهنه بندی تهیه شده با استفاده از روش جنگل تصادفی جزئیات بسیار بیشتری را نسبت به نقشه کریجینگ نمایش میدهد. خروجی مدل جنگل تصادفی با ترکیب متغیرهای کمکی مختلف به ترتیب مقادیری معادل 312/0، 54/0، 73/0و 16/0 از خطای مدل سازی کربن آلی، مواد آلی، هدایت الکتریکی و اسیدیته خاک را نشان داد. در منطقه مورد مطالعه، مقادیر بیشینه کربن آلی و مواد آلی خاک در کاربری شهری و بیشترین مقدار هدایت الکتریکی و اسیدیته خاک در زمینهای کشاورزی مشاهده شد. مهم ترین متغیرهای موثر بر توزیع فضایی کربن آلی و مواد آلی خاک clay، slope و silt بودند. در حالی که در مدلسازی هدایت الکتریکی، silt، BI و Aspect و در مدل سازی اسیدیته متغیرهای MNDWI، NDWI و DEM مهم تر از سایر متغیرها ثبت شدند.نتایج: به طور کلی این مطالعه نشان داد که مدل های رگرسیون کاربری اراضی براساس روش جنگل تصادفی میتواند به ترسیم سریع تر و کارآمدتر پارامترهای خاک کمک کند. نیاز به روش های کارآمد و دقیق، از جمله رگرسیون کاربری اراضی، برای نظارت مستمر بر تغییرات کیفیت خاک در سیماهای سرزمین های مختلف به شدت وجود دارد. رگرسیون کاربری اراضی میتواند به توسعه نقشههای پیشرفته پارامترهای کیفیت خاک با استفاده از اطلاعات مکانی مقرون به صرفه و در دسترس کمک کند.
Background and Aim: Soil is one of the most important natural resources that provides more than 97% of human food needs. Soil organic matter (SOM) is an important soil quality factor that greatly affects soil’s physical, chemical, and biological properties. Modeling and mapping of soil properties are critical in many environmental, climatic, ecological, and hydrological applications. The main objective of this study is to model the distribution of soil organic matter and organic carbon using satellite images and random forest and kriging models in Lenjan County.Method: In this study, digital maps of four main soil parameters including soil organic carbon, soil organic matter, electrical conductivity, and pH are prepared using random forest and Kriging methods in Lenjan County. Based on homogeneous land units, a total of 110 points in the study area are determined, and in these points, samples are taken from a depth of 0 to 30 cm of soil surface. Sampling is done in July 2021 and Sentinel-2 satellite images are acquired from the same month because better information is available this month due to fewer clouds and increased direct reflection from the soil surface. In addition, 16 environmental variables affecting the distribution of soil parameters are used. Various auxiliary variables such as NDVI, NDWI, DEM, and Slope are used for prediction, which are all directly or indirectly extracted from satellite images.Results: The maps obtained by the random forest method showed more accuracy than the kriging method. The zoning map prepared using the random forest method displays much more details than the map prepared by kriging method. The output of the random forest model with the combination of different auxiliary variables showed values equal to 0.312, 0.54, 0.73 and 0.16 of the modeling error for soil organic carbon, organic matter, electrical conductivity and pH, respectively. In the study area, the maximum values of soil organic carbon and organic matter were observed in urban areas and the highest values of electrical conductivity and pH were observed in agricultural lands. The most important variables affecting the spatial distribution of organic carbon and soil organic matter are clay, slope and silt. While in modeling electrical conductivity, silt BI and Aspect and in modeling pH, MNDWI, NDWI and DEM variables are recorded as more important than other variables.Conclusion: In general, this study demonstrates that land use regression models based on random forest method can help mapping soil parameters faster and more efficiently. There is a strong need for efficient and accurate methods, including land use regression, for continuous monitoring of changes in soil quality in different landscapes. Land use regression contributes developing advanced maps of soil quality parameters using cost-effective and accessible spatial information.
Azadi, N., & Sharifi, Z. (2020). Comparative study of the effects of wildfire and land use change on Soil Organic Carbon decomposition rate in aggregate size fraction of the Northern Zagros Oak Forest. J. of water and soil conservation, vol 27 (4), 167-184. doi: 10.22069/jwsc.17875.3345 (In persian)
Bagheri bodaghabadi, M., Martinez-Casasnovas, J.A., Khalili, P., & Masihabadi, M. (2015a). Assessment of the FAO traditional land evaluation methods, A case study: Iranian Land Classification method. Soil Use Manage. 31, 384–396.
Brevik, E.C., Pereira, P., Muooz-Rojas, M., Miller, B.A., Cerdà, A., Parras-Alcntara, L., & Lozano Garca, B. (2017). Historical perspectives on soil mapping and process modelling for sustainable land use management. In: Pereira, P., Brevik, E., Mouooz-Rojas, M., Miller, B. (Eds.), Soil Mapping and Process Modelling for Sustainable Land Use Management. Elsevier, Amsterdam, pp. 3–28. https://doi.org/10.1016/B978-0-12-805200-6.00001-3.
Castaldi, F., Hueni, A., Chabrillat, S., Ward, K., Buttafuoco, G., Bomans, B., Vreys, K., Brell, M., Wesemael, B. (2019). Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS Journal of Photogrammetry and Remote Sensing, 147, 267–282. https://doi.org/10.1016/j.isprsjprs.2018.11.026.
Fahmideh, S., Davari, M., Mosaddeghi, M.R., & Sharifi, Z. (2019). Performance evaluation of reflectance spectroscopy for estimation of soil organic carbon content in Zerbar lake watershed, Kurdistan province. J. of water and soil conservation vol. 26 (6):59-78. doi: 10.22069/jwsc.16387.3171. (In persian)
Fatehi, Sh., Eftekhari, K., & Ghaderi, J. (2020). Spatial downscaling of digital Soil Organic Carbon map using Dissever algorithm. J. of soil Management and Sustainable Production, 10 (2), 25-45. doi: 10.22069/ejsms.16857.1902 (In persian)
Fathololoumi, S., Vaezi, A. R., Alavipanah, S. K., Ghorbani, A., Saurette, D., & Biswas, A. (2020). Improved digital soil mapping with multitemporal. remotely sensed satellite data fusion: A case study in Iran. Science of the Total Environment, 721, 137703. https://doi.org/10.1016/j.scitotenv.137703.
Fathololoumi, S., Vaezi, A., Alavipanah, K., & Ghorbani, A. (2020). Modeling Soil Organic Carbon variations using Remote Sensing Indices in Ardabil Blikhli chay watershed. Iranian Journal of Soil and Water Research, 51 (9), 2417-2429. doi: 10.22059/ijswr.299509.668542. (In persian)
Feizi, H., Maleki, S., & Poozeshi, R. (2020). Impact of vegetation cover on Soil Organic Carbon storage and CO2 Fixation in Long-Term Land Uses in Bajestan, Khorasan Razavi. Applied Soil Research, 8 (4), 181-196. (In persian)
Ghafari, H., Arabkhedri, M., & Gorji, M. (2021). An overview on soil loss tolerance methods: challenges and opportunities. Watershed Engineering and Management, 13 (2), 389-404. doi: 10.22092/ijwmse.342692.1787. (In persian)
Gholizadeh, A., Zizala, D., Saberioon, M., Boruvka, L. (2018). Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sensing of Environment, 218, 89-103, https://doi.org/10.1016/j.rse.2018.09.015.
Grunwald, S. (2009). Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, 152 (3), 195–207.
Hengl, T., Heuvelink, G.B., Kempen, B., Leenaars, J.G., Walsh, M.G., Shepherd, K.D. and Tamene, L. 2015. Mapping soil properties of Africa at 250 m resolution, Random forests significantly improve current predictions. PloS one, 10 (6): 1-26.
Javanmand, A., Nazari, B., Jalilian, A., & Dashti, Sh. (2015). Effect of Different Levels of vermicompost and chemical Fertilizer applications on some physicochemical characteristics of soil and wheat (Triticum aestivum L.cv.Bahar) yield in Rotation with sugar Beet. Water and science soil. 26 (4/1), 167-181. (In persain)
Kempen, B., Brus, D.J., Stoorvogel, J.J., Heuvelink, G., & de Vries, F. (2012). Efficiency comparison of conventional and digital soil mapping for updating soil maps. Soil Sci. Soc. Am. J. 76 (6), 2097–2115.
Kettler, T.A., Doran, J., Gilbert, T.L. (2001). Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Science Society of America Journal, 65: 849-852.
Lahooti, P., Emadi, S.M., Bahmanyar, M.A., & Ghajar Sepanlou, M. (2018). Soil Organic Carbon Mapping by Geostatistics and Artificial Neural Network Methods (Kohgiluyeh and Boyer-Ahmad province). Journal of water and soil, 32 (6), 1135-1148. (In persian)
Lucà, F., Conforti, M., and Robustelli, G. 2011. Comparison of GISbased gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. Geomorphology, 134 : 297–308.
Malik, S., Bhowmik, T., Mishra, U., & Paul, N. (2020). Mapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data. Geocarto International, https://doi.org/10.1080/10106049.2020.1815864.
Mohkum Hammad, H., Khalig, A., Abbas, F., Farhad, W., Farhad, Sh., Aslam, M., Mustafa Shah, Gh., Nasim, W., Mubeen, M., & Bakhat, H. (2020). Comparative Effects of Organic and Inorganic Fortilizers on Soil Organic Carbon and Wheat Productivity under Arid Region. Communication in Soil Science and Plant Analysis. https://doi.org/10.1080/00103624.1763385.
Noor, H., & Mirnia, Kh. (2009). Organic matter losses in kojour watershed. J. of water and soil conservation, 18 (3), 207-211. (In persian)
Norouzi, A., & Fathi, E. (2018). Evalution of Agritourism Development Capabilities and Determination of Its Adoption in the Target Population (Farmers and Tourists) in Lenjan. Geography and Development. 16 (51), 241-260. doi: 10.22111/gdij.3872. (In persian)
Noshadi, E., Bahrami, H.A., & Alavipanah, S.K. (2014). Study the Relationship between Digital Number values from ETM+Satellite Images and Soil Organic Matter Using Artificial Neural Network and Regression Models. Environmental Erosion Researches, 4 (1), 29-38. (In persian)
Odgers, N.P., Holmes, K.W., Griffin, T., & Liddicoat, C. (2015). Derivation of soil-attribute estimations from legacy soil maps. Soil Research, 53, 881–894.
Page, AL., Miller, RH., & Jeeney., DR. (1992). Methods of soil analysis, part 2. In: Chemical and Mineralogical Properties. Soil Science Society of American Publication, Pp: 1159.
Pandi, H., Asadi Kapourchal, S., Vazifedoust, M., & Rezaei, M. (2020). Simulation of Rice Yield and its components using SWAP Model and Remote Sensing Technology for Optimal use of water and soil Resources. Environment and water Engineering, 6 (4), 374-387. doi: 10.22034/jewe.242119.1398. (In persian)
Popescu, R., Deodatis, G., Nobahar, A. (2005). Effects of random heterogeneity of soil properties on bearing capacity. Probabilistic Engineering Mechanics, 20, 324–341.
Raeesi, M., Zolfaghari, A., Yazdani, M., & Sabetizade, M. (2020). Investigating the Ability of Landsat 8 and Sentinel 2A Satellite Images for Estimating Soil Organic Matter and Available Phosphorus in Semnan Plain. Iranian Journal of Soil Research, 34 (1), 111-125. doi: 10.22092/ijsr.122157. (In persian)
Sadeghi, M., & Ahmadi Nadoushan, M. (2020). Evalution and Modeling Soil Salinity Using Remote Sensing, Regression Model and Random Forest. Iranian Journal of Soil Research, 34 (4), 486-500. (In persian)
Savari, Z., Hojati, S., & Taghizadeh-Mehrjardi, R. (2020). Digital Mapping of surface soil salinity in Khuzestan province, using Regression Kriging. Journal of water and soil science, 25 (3), 159-175. 10.47176/jwss.25.3.24654. (In persian)
Sodango, T., Sha, J., Li, X., Noszczyk, T., Shang, J., Aneseyee, A., & Bao, Zh. (2021). Modeling the spatial Dynamics of Soil Organic Carbon Using Remotely-Sensed Predictors in Fuzhou city, China. Remote sensing, 13 (9), 1682. https://doi. Org/ 10.3390/rs13091682.
Sulistyo, B.T., Gunawan, P., Danoedoro, N. and Listyaningrum, N. 2017. Absolute Accuracy of the Erosion Model of DEM-NDVI an-9d its Modification. International Journal of Geoinformatics, 13 (2): 13-20.
Tziachris, P., Aschonitis, V., Chatzistathis, T., Papadopoulou, M. (2019). Assessment of spatial hybrid methods for predicting soil organic matter using DEM derivatives and soil parameters. Catena, 174, 206-216.
Xu, H. (2006). Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. International Journal of Remote Sensing, 27 (14), 3025-3033.
Xu, Y., Smith, S.E., Grunwald, S. Abd-Elrahman, A., Wani, S.P. and Nair, V.D. 2018. Estimating soil total nitrogen in smallholder farm settings using remote sensing spectral indices and regression kriging. Catena, 163, 111-122.
Zeraatpisheh, M., Ayoubi, S., Jafari, A., & Finke, P. (2017). Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran. Geomorphology, 285, 186–204. https://doi.org/10.1016/j.geomorph.02.015
Zeraatpisheh, M., Jafari, A., Bodaghabadi, M. B., Ayoubi, S., Taghizadeh-Mehrjardi, R., Toomanian, N., & Xu, M. (2020). Conventional and digital soil mapping in Iran: Past, present, and future. Catena, 188, 104424. https://doi.org/10.1016/j.catena.104424.
Zhang, M., Zhang, M., Yang, H., Jin, Y., Zhang, X., Liu, H. (2021). Mapping Regional Soil Organic Matter Based on Sentinel-2A and MODIS Imagery Using Machine Learning Algorithms and Google Earth Engine. Remote Sens., 13, 2934. https://doi.org/10.3390/rs13152934.
Zhou, T., Geng, Y., Chen, J., Liu, M., Haase, D., & Lausch, A. (2020). Mapping soil organic carbon content using multi-source remote sensing variables in the Heihe River Basin in China. Ecol. Indic. 114, 106288. https://doi.org/10.1016/j.ecolind.106288.