شبیهسازی رشد چغندرقند تحت تنش آبی با استفاده از مدل AquaCrop
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریزهرا سعادتی 1 , معصومه دلبری 2 * , مهدی پناهی 3 , ابراهیم امیری 4
1 - دانش آموخته دکتری آبیاری و زهکشی/ دانشگاه زابل
2 - عضو هیات علمی/دانشگاه زابل
3 - عضو هیات علمی/ موسسه تحقیقات خاک و آب کرج
4 - عضو هیأت علمی/ دانشگاه آزاد اسلامی واحد لاهیجان
کلید واژه: پوشش گیاهی, مدل شبیهسازی, عملکرد, چغندرقند, کم آبیاری,
چکیده مقاله :
برای افزایش بهره وری آب و بهبود مدیریت آب در سطح مزرعه می توان از مدل های شبیه سازی رشد گیاه به عنوان یک ابزار مفید استفاده نمود. در این مطالعه، کارآیی مدل AquaCrop در شبیه سازی پوشش گیاهی، ماده خشک و عملکرد گیاه چغندرقند و رطوبت خاک تحت شش تیمار آبیاری شامل آبیاری کامل به عنوان تیمار شاهد (T1)، رساندن رطوبت خاک در هر آبیاری به حد ظرفیت مزرعه و حذف آبیاری آخر (T2)، آبیاری گیاه به میزان 10 درصد بیشتر از تیمار شاهد (T3)، آبیاری گیاه بهمیزان 10 درصد کمتر از تیمار شاهد (T4)، آبیاری گیاه به میزان 20 درصد کمتر از تیمار شاهد (T5) و آبیاری گیاه به میزان 30 درصد کمتر از تیمار شاهد (T6) ارزیابی شد. آزمایش در منطقه الشتر واقع در استان لرستان در قالب طرح بلوک های کامل تصادفی طی دو سال زراعی 1393 و 1394 انجام شد. مدل AquaCrop بر اساس اطلاعات زراعی سال اول آزمایش واسنجی و سال دوم اعتبارسنجی شد. ارزیابی آماری مدل با استفاده از معیارهای ضریب جرم باقی مانده ها، ریشه میانگین مربعات خطا، ریشه میانگین مربعات خطای نرمال شده، شاخص توافق و ضریب تعیین انجام گرفت. بر اساس نتایج، مقدار ریشه میانگین مربعات خطای نرمال شده در شبیه سازی روند توسعه پوشش گیاهی و رطوبت خاک در تیمارهای مختلف آبیاری در مرحله واسنجی به ترتیب بین 18/5 تا 41/9 و 91/9 تا 23/17 درصد و در مرحله اعتبارسنجی به ترتیب بین 64/6 تا 2/9 و 36/12 تا 77/25 درصد به دست آمد. مقدار ریشه میانگین مربعات خطای نرمال شده در شبیه سازی عملکرد ریشه و ماده خشک در مرحله واسنجی به ترتیب 3/7 و 67/8 درصد و در مرحله اعتبارسنجی به ترتیب 69/7 و 82/9 درصد به دست آمد. به طور کلی نتایج مبین عملکرد خوب مدل AquaCrop در شبیه سازی پوشش گیاهی، ماده خشک و عملکرد گیاه چغندرقند و رطوبت خاک تحت رژیم های مختلف آبیاری است. لذا استفاده از این مدل در تعیین استراتژی های بهینه مدیریت آب در کشت چغندرقند در منطقه مورد مطالعه پیشنهاد می شود.
Simulation models that illustrate the effects of water on crop yield are useful tools to optimize water productivity and improve farm level water management. In this study, the performance of AquaCrop model to simulate canopy cover, biomass and yield of the sugar beet and soil water content under six irrigation treatments was evaluated. The irrigation treatments were consisted of full irrigation (T1) as control, removing last irrigation (T2), applying irrigation water at 10% greater than control (T3), applying irrigation water at 10 (T4), 20 (T5) and 30% (T6) less than control. The experiment was conducted at Aleshtar in Lorestan province during growing seasons of 2014 and 2015, using a randomized complete block design. The first and second year’s data were used for calibrating and validating of the model, respectively. Evaluation of the model was performed using the coefficient of residual mass, root mean square error, normalized root mean square error, index of agreement and coefficient of determination. According to the results, the normalized root mean square error in the canopy cover and soil water content simulations for calibration was 5.18 to 9.41 percent and 9.91 to 17.23 percent, respectively and for validation was 6.64 to 9.2 percent and 12.36 to 25.77 percent, respectively. Also, the normalized root mean square error in the yield and biomass simulations for calibration was 7.3 and 8.67 percent and for validation was 7.69 and 9.82 percent, respectively. The results indicated a good performance of the AquaCrop Model in simulating the canopy cover development, biomass and yield of sugar beet and soil water content under different irrigation managements. Therefore, the AquaCrop model can be used to explore management scenarios to improve the sugar beet water management over the study region.
ابراهیمی، م.، رضاوردینژاد، و. و مجنونی هریس، ا. 1394 . شبیهسازی رشد ذرت تحت مدیریتهای مختلف آب و نیتروژن با مدل
AquaCrop . مجله تحقیقات آب و خاک ایران، 46 ( 2 :) 220 - 207 .
اکبری، م. 1390 . بیلان آب خاک و عملکرد محصول گندم با استفاده از مدل شبیهسازی AquaCrop )مطالعه موردی در شبکه آبیاری
آبشار اصفهان(. مجله تحقیقات مهندسی کشاورزی، 12 ( 4 :) 34 - 19 .
بابازاده، ح. و سرائی تبریزی، م. 1391 . ارزیابی مدل AquaCrop تحت شرایط مدیریت کم آبیاری سویا. نشریه آب و خاک )علوم و
صنایع کشاورزی(، 26 ( 2 :) 339 - 329 .
توکلی، ع.ر.، لیاقت، ع.م. و علیزاده، ا. 1392 . بررسی موازنه آب خاک، تاریخ کاشت و عملکرد گندم با استفاده از مدل AquaCrop در
شرایط دیم و آبیاری محدود. مجله تحقیقات مهندسی کشاورزی، ) 4 ) 14 : 56 - 41 .
زندپارسا، ش.، پرویزی، س.، سپاسخواه، ع.ر. و مهبد، م. 1395 . ارزیابی مقادیر شبیهسازی شده رطوبت خاک، ماده خشک و عملکرد دانه
گندم زمستانه رقم شیراز با استفاده از مدلهای WSM و AquaCrop . نشریه علوم آب و خاک )علوم و فنون کشاورزی و منابع
طبیعی(، ) 20 ) 76 : 70 - 59 .
علیزاده، ا. 1385 . طراحی سیستمهای آبیاری. مشهد: دانشگاه امام رضا )ع(، جلد 1 . 452 صفحه.
قربانیان کردآبادی، م.، لیاقت، ع.م.، وطنخواه، ا. و نوری، ح. 1393 . شبیهسازی عملکرد و تبخیر و تعرق ذرت علوفهای با استفاده از مدل
AquaCrop . نشریه حفاظت منابع آب و خاک، 4 ( 2 :) 64 - 47 .
گلابی، م. و ناصری، ع.ع. 1394 . ارزیابی مدل AquaCrop در پیشبینی عملکرد نیشکر و شوری پروفیل خاک تحت تنش شوری. مجله
تحقیقات آب و خاک ایران، 46 ( 4 :) 694 - 685 .
محمدی، م.، داوری، ک.، قهرمانی، ب.، انصاری، ح. و شهیدی، ع. 1394 . پیشبینی رطوبت و شوری نیمرخ خاک با استفاده از مدل
AquaCrop در تیمارهای مختلف کم آبیاری و شوری. نشریه دانش آب و خاک، 25 ( 1 / 4 :) 210 - 195 .
Akumaga, U., Tarhule, A. and Yusuf, A.A. 2017. Validation and testing of the FAO AquaCrop model under different levels of nitrogen fertilizer on rainfed maize in Nigeria, West Africa. Agricultural and Forest Meteorology, 232: 225-234.
Allen, R.G., Periera, L.S., Raes, D. and Smith, M. 1998. Crop evapotranspiration. Guidelines for computing crop water requirement. FAO Irrigation and Drainage Paper, No. 56. FAO, Rome.
Andarzian, B., Bannayan, M., Steduto, P., Mazraeh, H., Barati, M.E., Barati, M.A. and Rahnama, A. 2011. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management, 100 (1): 1-8.
Araya, A., Habtu, S., Hadgu, K.M., Kebede, A. and Dejene, T. 2010. Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agricultural Water Management, 97: 1838–1846.
Belmans, C., Wesseling, J.G. and Feddes, R.A. 1983. Simulation model of the water balance of cropped soil: SWATRE. Journal of Hydrology, 63: 271–286.
Doorenbos, J. and Kassam, A.H. 1979. Yield response to water. FAO Irrigation and Drainage Paper, No. 33. FAO, Rome. 201 Pages.
FAO. 2009. ETo calculator version 3.1. In: Evapotranspiration from Reference Surface, FAO, Land and Water Division, Rome, Italy.
Farahani, H.J., Izzi, G. and Oweis, T.Y. 2009. Parameterization and Evaluation of the AquaCrop Model for Full and Deficit Irrigated Cotton. Agronomy Journal, 101: 469–476.
Geerts, S., Raes, D., Garcia, M., Miranda, R., Cusicanqui, J.A., Taboada, C., Mendoza, J., Huanca, R., Mamani, A., Condori, O., Mamani, J., Morales, B., Osco, V. and Steduto, P. 2009. Simulating Yield Response of Quinoa to Water Availability with AquaCrop. Agronomy Journal, 101: 499-508.
Heng, L.K., Hsiao, T.C., Evett, S., Howell, T. and Steduto, P. 2009. Validating the FAO AquaCrop Model for Irrigated and Water Deficient Field Maize. Agronomy Journal, 101: 488–498.
Hsiao, T.C., Heng, L.K., Steduto, P., Rojas-Lara, B., Raes, D. and Fereres, E. 2009. AquaCrop—the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101: 448–459.
Iqbal, M., Shen, Y., Stricevic, R., Pei, H., Sun, H., Amiri, E., Penas, A. and Del Rio, S. 2014. Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agricultural Water Management, 135: 61-72.
Katerji, N., Campi, P. and Mastrorilli, M. 2013. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agricultural Water Management, 130: 14– 26.
Liu, H.F., Genard, M., Guichard, S. and Bertin, N. 2007. Model-assisted analysis of tomato fruit growth in relation to carbon and water fluxes. Journal of Experimental Botany, 58 (13): 3567-3580.
Malik, A., Shakir, A.S., Ajmal, M., Khan, M.J. and Khan, T.A. 2017. Assessment of AquaCrop model in simulating sugar beet canopy cover, biomass and root yield under different irrigation and field management practices in semi-arid regions of Pakistan. Water Resources Management, 31 (13): 4275-4292.
Mebane, V.J., Day, R.L., Hamlett, J.M., Watson, J.E. and Roth, G.W. 2013. Validating the FAO AquaCrop model for rainfed maize in Pennsylvania. Agronomy Journal, 105(2): 419-427.
Mkhabela, M.S. and Bullock, P.R. 2012. Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada. Agricultural Water Management, 110: 16-24.
Montoya, F., Camargo, D., Ortega, J.F., Corcoles, J.I. and Dominguez, A. 2016. Evaluation of Aquacrop model for a potato crop under different irrigation conditions. Agricultural Water Management, 164: 267-280.
Ritchie, J.T. 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 8: 1204–1213.
Ritchie, J.T., Godwin, D.C. and Otter-Nacke, S. 1985. CERES-Wheat: A Simulation Model of Wheat Growth and Development. Texas A. & M University. press, College station.
Saadati, Z., Pirmoradian, N. and Rezaei, M. 2011. Calibration and evaluation of AquaCrop model in rice growth simulation under different irrigation managements. 21th International Congress on Irrigation and Drainage, October 19-23, 2011, Tehran, Iran, 589-600.
Singh, A.K., Tripathy, R. and Chopra, U.K. 2008. Evaluation of CERES-Wheat and CropSyst models for water—nitrogen interactions in wheat crop. Agricultural Water Management, 95: 776–786.
Soler, C.M.T., Sentelhas, P.C. and Hoogenboom, G. 2007. Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. European Journal Agronomy, 27: 165-177.
Steduto, P., Hsiao, T.C., Raes, D. and Fereres, E. 2009. AquaCrop—the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agronomy Journal, 101: 426–437.
Stricevic, R., Cosic, M., Djurovic, N., Pejic, B. and Maksimovic, L. 2011. Assessment of the FAO AquaCrop model in the simulation of rainfed and supplemental irrigated maize, sugar beet and sunflower. Agricultural Water Management, 98: 1615– 1621.
Todorovic, M., Albrizio, R., Zivotic, L., Abi Saab, M., Stöckle, C. and Steduto, P. 2009. Assessment of AquaCrop, CropSyst, and WOFOST Models in the Simulation of Sunflower Growth under Different Water Regimes. Agronomy Journal, 101: 509–521.
Zeleke, K.T., Luckett, D. and Cowley, R. 2011. Calibration and testing of the FAO AquaCrop model for canola. Agronomy Journal, 103: 1610–1618.