مدیریت جامع آب کشاورزی در مقیاس حوضه آبریز(IWMsim) با رویکرد پویایی سیستم
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریمریم سلطانی 1 , حمزه علی علیزاده 2 *
1 - دانشجوی کارشناسی ارشد
2 - استادیار گروه مهندسی آب، دانشگاه ایلام
کلید واژه: هزینههای ملی, درآمد ملی, توسعه پایدار, تراز آب زیرزمینی,
چکیده مقاله :
دستیابی به توسعه پایدار سیستمهای منابع آب، مستلزم ارزیابی و بررسی اثرات بلندمدت اقتصادی، اجتماعی و زیستمحیطی طرحهای توسعه و مدیریت منابع آب میباشد. از این رو توسعه مدلی که بتواند ابعاد مختلف طرحهای توسعه منابع آب و برهمکنش اتخاذ شیوههای مختلف بهرهبرداری را شبیهسازی کند و با آن مدل بتوان راهکارهای مدیریتی مختلف را سنجید، میتواند کمک زیادی به مدیران و تصمیمگیران حوزه آب بنماید. در این مطالعه با استفاده از رویکرد پویایی سیستمها یک مدل جامع و پویا موسوم به IWMsim برای ارزیابی سیاستهای مدیریتی مختلف و کمک به تصمیمسازی در سطوح کلان مدیریت منابع آب توسعه داده شد. در مدل IWMsim برای بررسی اثرات متقابل اقتصادی- زیستمحیطی طرحهای توسعه منابع آب دو شاخص کلان هزینههای ملی و درآمد ملی توسعه داده شد. سپس مدل ارائه شده با استفاده از اطلاعات اقلیمی و هیدرولوژیکی بلندمدت محدوده مطالعاتی ورامین واسنجی و صحتسنجی شد. مدل با استفاده از شاخصهای آماری میانگین مربعات خطا (RMSE)، حداکثر خطا (ME) و ضریب تبیین (R2) مورد ارزیابی قرار گرفت. نتایج ارزیابیها نشان داد که مدل قادر است متغیرهای کلیدی عملکرد نسبی محصولات زراعی (RMSE=14.2%، ME=20% و R2=0.92)، تراز آب زیرزمینی (RMSE=0.37m، ME=0.45m و R2=0.99) و شوری آب زیرزمینی (RMSE=57 μS/cm، ME=148μS/cm و R2=0.79) را با دقت مناسب شبیهسازی نماید.
Assessment of the economic, social and environmental effects of water projects is required to achieve sustainable development. Therefore, the development of a model that can simulate the different dimensions of water resource development projects and interactions between different methods of operation, can be helpful to managers and decision makers in the water sector. The main objective of present study was development of water integrated model (IWMsim) to evaluate different management policies and contribute to improve decision-making in large scale systems, using system dynamics modeling approach. The developed model is capable of simulating the impact of various effective factors in the water utilization on economic and environmental sustainability. In this investigation, to study interactions between environmental and economic effects of water resources development projects, two macro indicators of national costs and national revenue were developed. The developed model was calibrated and validated using long-term climatological, hydrological, agricultural and environmental data of Varamin case study. The developed system dynamics model evaluation showed that the model was able to simulate key variables such as relative crop yield (RMSE=14.2%,ME=20%andR2=0.92), groundwater levels (RMSE=0.37m, R2=0.92and ME=0.45m) and groundwater salinity (RMSE=57 μS/cm, R2=0.79andME=148μS/cm) with reasonable accuracy.
بی نام. 1393. گزارش مطالعات بازنگری و علاج بخشی شبکه آبیاری و زهکشی دشت ورامین. شرکت مهندسان مشاور مهارآب عمران گستر.
سهرابی ملایوسف، ت؛ لیاقت، ع، علیزاده، ح.ع و نظری، ب. 1393. مدلسازی و شبیه سازی آثار بلندمدت استفاده از فاضلاب تهران بر منابع آب و خاک دشت ورامین با استفاده از مدلسازی پویای سیستمها. مجله تحقیقات آب و خاک ایران. 45 (3): 281-267.
علیزاده، ح. ع؛ لیاقت، ع و سهرابی ملایوسف، ت. 1393. ارزیابی سناریوهای توسعه سیستم های آبیاری تحت فشار بر منابع آب زیرزمینی با استفاده از مدل سازی پویایی سیستم. نشریه حفاظت منابع آب و خاک، 3 (4): 15-1.
مشعل، م.، وراویپور، م.، ساداتنوری، س و زارع زیرک، ا. 1387. بهینهسازی عمق آب مصرفی ذرت با کم آبیاری (مطالعه موردی: دشت ورامین). مجله پژوهش کشاورزی. 8 (4): 134-123.
نظری، ب.، 1392. مدلسازی پویای شبکههای آبیاری با رویکرد بهرهوری آب. رساله دکتری رشته آبیاری و زهکشی. گروه مهندسی آبیاری و آبادانی. دانشگاه تهران. 150 صفحه.
Adeniran, A.E., and Bamiro, A.O. 2010. A System Dynamic Strategic Planning Model for a Municipal Water Supply Scheme,28th International Conference of the System Dynamics Society, 25-29 July, Seoul, Korea.
Alien, R.G., Pereira, L.S. and Raes, D., 1998. FAO irrigation and drainage paper No. 56: crop evapotranspiration.
Amahmid, O., Asmama, S., and Bouhoum, K. 1999. The effect of wastewater reuse in irrigation on the contamination level of food crops by Giardia cysts and Ascaris eggs. International Journal of Food Microbiology.49(1-2): 19-26.
Ayars, J.E., D.L. Corwin, and G.J. Hoffman. 2012. Leaching and root zone salinity control. ASCE Manual and Report Engineering Practice No 71 Agricultural Salinity Assessment and Management (2nd Edition), ASCE Riston.Chapter 12: 371-403.
Bala, B. K. Satter, M. A. Halima, M. A., and Talukdar, M. S. U. 1998. Simulation of Crop-Irrigation Systems. Agricultural Systems (27) 51-65.
Bhatkoti, R. and Triantis, P.K. (2011): Quantitative Evaluation of the Performance of Water Management System in the Washington Metropolitan Area, The 29th International Conference of the System Dynamics Society
Fernández, J.M. and Selma, M.A.E., 2004. The dynamics of water scarcity on irrigated landscapes: Mazarrón and Aguilas in south‐eastern Spain. System Dynamics Review, 20(2), pp.117-137.
Gastélum, J. R., Valdés, J. B and Stewart, S. 2010. A System Dynamics Model to Evaluate Temporary Water Transfers in the Mexican Conchos Basin. Water Resources Management . 24: 1285-1311.
Giordano, R., Brugnach, M., & Vurro, M. 2012. System dynamic modelling for conflicts analysis in groundwater management (Doctoral dissertation, International Environmental Modelling and Software Society.
Goldani, M., Amadeh, H., and Zamanipour, M. 2011. A System Dynamics Approach in Water Resource Management and Government Subsidy Policy: A Case Study of Tajan Basin in Tran, the 29th International Conference of the System Dynamics Society.
Hjorth, P, Bagheri, A. 2006. Navigating Towards Sustainable Development: A System Dynamics Approach. Futures, 38 (1): 74-92.
Khan, S., Yufeng, L., & Ahmad, A. 2009. Analysing complex behaviour of hydrological systems through a system dynamics approach. Environmental Modelling & Software, 24(12), 1363-1372.
Li, Y.P and Huang, G. H. 2012. A recourse-based nonlinear programming model for stream water quality management. Stoch Environ Res Risk Assess 26:207–223.
Li, Y.P., Huang, G.H and Chen, X. 2009. Multistage scenario-based intervalstochastic programming for planning water resources allocation. Stoch Environ Res Risk Assess 23:781–792
Madani, K., and Mariño, M. A. 2009. System dynamics analysis for managing Iran’s Zayandeh-Rud river basin. Water resources management, 23(11), 2163-2187.
Masike, S. 2011. Application of system dynamic approach for water planning and decision making under water scarcity at Jwaneng diamond mine. Journal of Geography and Regional Planning. 4(5): 251-260.
Nasiri, F., Savage, T., Wang, R., Barawid, N and Zimmerman, J. B. 2013. A system dynamics approach for urban water reuse planning: a case study from the Great Lakes region. Journal of Stoch Environ Res Risk Assess. 27:675–691
Nozari H, Heydari M, Azadi S. 2014. Simulation of a Right Abshar Irrigation Network and Its Cropping Pattern Using a System Dynamics Approach. Journal of Irrigation and Drainage Engineering.140(12):05014008.
Nozari, H. and Liaghat, A., 2014. Simulation of Drainage water quantity and quality using system dynamics. Journal of Irrigation and Drainage Engineering, 140(11), p.05014007..
Rehan, R., Knight, M.A, Haas, C.T and Unger, A.J.A. 2011. Application of system dynamics for developing financially self-sustaining management policies for water and wastewater systems. Water research 45: 4737 -4750.
Saysel, A and Barlas, Y. 2006. Model simplification and validation with indirect structure validity tests. System Dynamics Review 22(3): 241–262.
Susnik, J., Vamvakeridou-Lyroudia, L. S., Savić, D. A., and Kapelan, Z. 2012. Integrated System Dynamics Modelling for water scarcity assessment: Case study of the Kairouan region. Science of the Total Environment, 440, 290-306.
Udono, K., Sitte, R. 2008. Modeling seawater desalination powered by waste incineration using a dynamic systems approach. Journal of Desalination. 229:302–317.
Van Rensburg, B.J., Weyl, O.L.F., Davies, S.J., van Wilgen, N.J., Spear, D., Chimimba, C.T. et al., 2011, ‘Invasive vertebrates of South Africa’, in D. Pimentel (ed.), Biological invasions: Economic and environmental costs of alien plant, animal, and microbe species, pp. 325–378, CRC Press, Boca Raton, FL.
Xi, X., and Poh, K. L. (2013). Using system dynamics for sustainable water resources management in Singapore. Procedia Computer Science, 16, 157-166.
Yu, C.H., Chen, C.H., Lin, C.F. and Liaw, S.L., 2003. Development of a system dynamics model for sustainable land use management. Journal of the Chinese Institute of Engineers, 26(5), pp.607-618.
Zarghami, M. and Akbariyeh, S. 2012. system dynamics modeling for complex urban water systems: application to the city of Tabriz, Iran. Resources, Conservation and Recycling, 60: 99-106.
_||_