اثرات کوتاه مدت بایوچار حاصل از برگ خرما بر حفظ رطوبت در خاک لوم شنی
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریمهرداد نوروزی 1 , سید حسن طباطبائی 2 , محمدرضا نوری 3 , حمید رضا متقیان 4
1 - دانشجو دکتری آبیاری و زهکشی؛ گروه مهندسی آب؛ دانشکده کشاورزی؛ دانشگاه شهرکرد؛ ایران
2 - دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهرکرد
3 - دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهرکرد
4 - استادیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه شهرکرد
کلید واژه: ظرفیت نگهداری رطوبت, بایوچار, آب قابل دسترس گیاه,
چکیده مقاله :
بایوچار، نام ترکیب آلی پایداری است که از تجزیه گرمایی هر نوع زیستتوده تحت شرایط محدودیت اکسیژن که پیرولیز گفته میشود تهیه میگردد و در کشاورزی به منظور اصلاح شرایط فیزیکی و شیمیایی خاک استفاده میشود. هدف اصلی در این پژوهش، بررسی اثرات بایوچار برگ خرما بر خصوصیات فیزیکی و رفتار رطوبتی خاکی با بافت لوم شنی بود. پنج نوع بایوچار تحت شرایط دمایی متفاوت (300، 350، 400، 450 و 500 درجه سانتیگراد) و مدت حرارت 3 ساعت با استفاده از یک بوته برقی تهیه شد. بایوچارها با نسبت وزنی 3 درصد، بطور یکنواخت و بصورت پودری با خاک عبور داده شده از الک 2 میلیمتر مخلوط شده و به مدت 2 ماه خوابانده شدند، سپس منحنی مشخصه رطوبتی مبتنی بر مدل ونگنوختن تعیین شد. رطوبت در وضعیتهای ظرفیت مزرعه (FC)، نقطه پژمردگی دائم (PWP)، آب قابل دسترس گیاه (PAWC)، ظرفیت نگهداری رطوبت (WHC) و درصد اشباع ( ) تعیین شدند. بر اساس نتایج بدست آمده، با افزایش دمای پیرولیز در دامنه 300 تا 500 درجه سانتیگراد تغییرات معنیداری در خصوصیات فیزیکی و رفتار رطوبتی خاک ایجاد نشد ولی بطور کلی کاربرد بایوچار باعث کاهش معنیدار (P<0.01) وزن مخصوص ظاهری گردید که به چگالی پایین ذرات بایوچار و نقش آن در بازآرایی منافذ خاک و تشکیل منافذ ثانویه نسبت داده میشود. مقادیر میانگین WHC، PAWC، و FC به ترتیب به میزان 4/24، 1/20، 4/23 و 24 درصد نسبت به تیمار شاهد (خاک بدون بایوچار) افزایش پیدا کردند ولی PWP تغییرات معنیداری نداشت. دادههای منحنیهای مشخصه رطوبتی نشان داد که بایوچار باعث افزایش معنیدار (P<0.01) منافذ بزرگتر از µm 2/0 که به لحاظ ذخیره رطوبت قابل دسترس گیاه حائز اهمیت است میگردد.
Biochar is a durable organic compound obtained by thermal decomposition of biomass under oxygen-limited conditions (called pyrolysis). It is used for improving chemical and physical properties of soil in agriculture. The main objective of this paper was to evaluate the effects of biochar, produced from date palm’s leaves, on the physical properties and hydrological behavior of a sandy loam soil by carrying out a pot experiment. Pyrolyzed at different temperatures (300, 350, 400, 450 and 500 degree of centigrade) in an electric furnace five biochars were obtained. Biochars were in powdered form and evenly added to soil (air-dried and passed through a 2 mm sieve) at the rate of 3% (w/w) and incubated for 2 months. Water retention curves (WRCs) based on Van Genuchten model determined. By measuring gravimetric water content at field capacity (FC) and permanent wilting point (PWP), plant available water content (PAWC) calculated. Also, water holding capacity (WHC) and saturation percentage ( ) determined. The results showed that by increasing pyrolysis temperature from 300 to 500 degree of centigrade, physical properties and hydrological behavior of the soil had not significant changes. Generally, soil bulk density (BD) significantly (P<0.01) decreased compared to control, which could be attributed to low density of biochar particles and its contribution on rearrangement of soil pores and creation of new accommodation pores. WHC, PAWC, and FC increased 24.4%, 20.1%, 23.4% and 24% respectively compared to control, but PWP had not significant changes. Data of WRCs indicated a significant (P<0.01) increase in pores greater than 0.2 µm, which are important in storing plant available water.
Andrenelli, M.C., Maienzab, A., Genesiob, L., Migliettab, F., Pellegrini, S., Vaccari, F.P. and Vignozzi, N. 2016. Field application of pelletized biochar: Short-term effect on the hydrological properties of a silty clay loam soil. Journal of Agricultural Water Management, 163: 190–196.
Basso, A. S. 2012. Effect of fast pyrolysis biochar on physical and chemical properties of a sandy soil. Master’s Thesis, Iowa State University, Ames, 69 pp.
Bird, M. I., Ascough, P. L.,Young, I. M., Wood, C. V. and Scott, A. C. 2008. X-ray microtomographic imaging of charcoal. Journal of Archaeological Science, 35: 2698-2706.
de Melo Carvalho, M.T., de Holanda Nunes Maia, A., Madari, B.E., Bastiaans, L., van Oort, P.A.J., Heinemann, A.B., Soler da Silva, M.A., Petter, F.A., Marimon Jr., B.H. and Meinke, H. 2014. Biochar increases plant-available water in a sandy loam soil under an aerobic rice crop system. Solid Earth, 5: 939–952.
Cheng, C. H., Lehmann, J., Thies, J. E., Burton, S. D. and Engelhard, M. H. 2006. Oxidation of Black carbon by biotic and abiotic processes. Organic Geochemistry, 37: 1477-1488.
Gaskin, J. W., Steiner, C., Harris, K., Das, K. C. and Bibens, B. 2008. Effect of low temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 51: 2061-2069.
Glaser, B., Lehmann, J. and Zech, W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Journal of Biology and Fertility of Soils, 35: 219–230.
Guo, Y. and Rockstraw, D. A. 2007. Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous and Mesoporous Materials, 100: 12-19.
Hardie, M., Clothier, B., Bound, S., Oliver G. and Close, D. 2014. Does biochar influence soil physical properties and soil water availability? Plant and Soil, 376: 347–361.
Hillel, D. 1982. Introduction to Soil Physics. Academic Press, New York, 364 pp.
Kookana R. S., Sarmah, A. K., van Zwieten, L., Krull, E. and Singh B. 2011. Biochar application to soil: Agronomic and environmental benefits and unintended consequences. Advances in Agronomy, 112: 103-143.
Lehmann, J. and Joseph, S. 2009. Biochar for environmental management: An introduction. P. 67-84. In J. Lehmann and S. Joseph (ed.) Biochar for environmental management. Science and Technology. James & James. Earthscan. London. UK.
Lim, T.J., Spokas, K.A., Feyereisen, G. and Novak, J. M. 2015, predicting the impact of biochar additions on soil hydraulic properties, Chemosphere, 142:136-44.
Lu, S. G., Sun, F. F. and Zong, Y. T. 2014. Effect of rice husk biochar and coalfly ash on some physical properties of expansive clayey soil (Vertisol). Catena 114: 37–44.
Major, J., Rondon, M., Molina, D., Riha, S. J. and Lehmann, J. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 333: 117–128.
Mollinedo, J., Schumacher, E.T. and Chintala, R. 2015. Influence of feedstocks and pyrolysis on biochar’s capacity to modify soil water retention characteristics, Journal of Analytical and Applied Pyrolysis, 114:100–108.
Mukherjee, A. and Lal, R. 2013. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy, 3:313–39.
Novak, J.M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C., Ahmedna, M., Rehrah, D., Watts, D.W., Busscher, W.J. and Schomberg, H. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science, 3: 195–206.
Obia, A., Muldera, J., Martinsena, V., Cornelissen, G. and Børresen, T. 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil and Tillage Research, 155:35–44.
Ouyang, L., Wang, F., Tang, J., Yu, L. and Zhang, R. 2013. Effects of biochar amendment on soil aggregates and hydraulic properties. Journal of Soil Science and Plant Nutrition, 13 (4): 991-1002.
Rowell, D. L. 1994. Soil Science: Methods and Applications. Longman Scientific & Technical, UK, 350 pp.
Singh, B., Singh, B. P. and Cowie, A. L. 2010. Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research, 48: 516-525.
Thangalazhy, G. S., Adhikari, S., Ravindran, H., Gupta, R. B., Fasina, O., Tu, M. and Fernando, S. D. 2010. Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor. Bioresource Technology, 101(21): 8389-8395.
Uzoma, K. C., Inoue, M., Andry, H., Zahoor, A. and Nishihara E. 2011. Influence of biochar application on sandy soil hydraulic properties and nutrient retention. Journal of Food, Agriculture and Environment, 9:1137–1143.
van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of American Journal, 44: 892-898.
Verheijen, F., Jeffery, S., Bastos, A. C., van der Velde, M. and Diafas, I. 2010. Biochar Application to Soils – A Critical Scientific Review of Effects on Soil Properties Processes and Functions. EUR 24099 EN. Office for the Official Publications of the European Communities. Luxembourg, 149 pp.
Wraith, M. and Or, D. 1998. Nonlinear Parameter Estimation Using Spreadsheet Software. Journal of Natural Resources and Life Sciences Education, 27: 13-19.
Woolf, D., Amonette, J., E., Street-Perrott, F., A., Lehmann, J. and Joseph, S. 2010. Sustainable biochar to mitigate global climate change. Nature Communicaions, 1: 1-9.
Wu, W. Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu H. and Chen, Y. 2012. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy, 47: 268–276.
Yu, O. Y., Raichle, B. Sink, S. 2013. Impact of biochar on the water holding capacity of loamy sand soil. International Journal of Energy and Environmental Engineering, 4(1):1-9.