بررسی عملکرد مدلهای تجربی تخمین نیاز آبی گیاه مرجع در شهرستان میانه
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریفریبرز احمدزاده کلیبر 1 , احد مولوی 2 *
1 - استاديار، گروه علوم و مهندسي آب، دانشکده کشاورزي و منابع طبيعي، واحد تبريز، دانشگاه آزاد اسلامي، تبريز، ايران.
2 - استاديار، گروه علوم و مهندسي آب، دانشکده کشاورزي و منابع طبيعي، واحد تبريز، دانشگاه آزاد اسلامي، تبريز، ايران.
کلید واژه: تبخير و تعرق, ضرايب رگرسيون, مدلهاي تجربي,
چکیده مقاله :
زمينه و هدف: تبخير و تعرق يکي از عوامل بسيار مهم چرخه هيدرولوژيکي بوده و تخمين آن براي طيف وسيعي از تحقيقات ازجمله بيلان آبي، طراحي و مديريت سامانههاي آبياري، شبيهسازي و مدل بندي، برنامهريزي منابع آب ضروري است. مدلي بايد انتخاب شود که بتواند با توجه به شرايط منطقه و استفاده حداقل از دادههاي اقليمي، تبخير و تعرق را دقيق برآورد کند. هدف از اين تحقيق، بررسي کارايي مدلهاي مختلف برآورد تبخير-تعرق گياه مرجع با در نظر گرفتن مدل فائو-پنمن-مونتيث بهعنوان مدل مبنا و درنتيجه تعيين مناسبترين مدل جايگزين با لحاظ بهکارگيري کمترين داده در ايستگاه سينوپتيک شهرستان ميانه بود.
روش پژوهش: محل موردمطالعه ايستگاه سينوپتيک ميانه بود. اين ايستگاه در شهرستان ميانه واقعشده است. شهرستان ميانه، در گوشه جنوب شرقي استان آذربايجان شرقي قرارگرفته است. براي انجام اين پژوهش و برآورد ميزان تبخير و تعرق گياه مرجع از پارامترهاي هواشناسي متعددي از قبيل سرعت باد، متوسط درصد ساعات آفتابي، دماي متوسط ماهانه، دماي حداکثر ماهانه، دماي حداقل ماهانه، رطوبت نسبي حداكثر ماهانه، رطوبت نسبي متوسط ماهانه، رطوبت نسبي حداقل ماهانه، فشار هوا، تشعشع برون زميني ايستگاه سينوپتيك ميانه استفاده به عمل آمد. جهت محاسبه تبخير و تعرق گياه مرجع از زبان برنامهنويسي ويژوالبيسيک استفاده شد. براي ارزيابي مدلهاي محاسبه تبخير و تعرق گياه مرجع چهار دسته مدلهاي ترکيبي (پنمن-رايت، آلن-پنمن-پروت)، تابشي (دورنبوس-پروت و جنسن هيز)، دمايي (ليناکر و هارگريوز) و مدل رطوبتي ايوانف در نظر گرفته شدند. مدل فائو-پنمن-مونتيث بهعنوان مدل استاندارد براي ارزيابي عملکرد ساير مدلها در نظر گرفته شد. بررسي کارايي مدلها تحت پنج شاخص آماري جذر ميانگين مربعات خطا، ميانگين خطاي متوسط، ميانگين خطاي مطلق، ضريب تبيين و معيار جاکوويدس انجام گرديد.
يافتهها: نتايج نشان داد در بين دسته مدلهاي ترکيبي ضريب تبيين مدل آلن-پنمن-پروت با مقدار 859/0 داراي همخواني نسبتاً خوبي در مقايسه با مدل پنمن-رايت بود. مقايسه ETP حاصل از مدل آلن-پنمن-پروت و مدل مبنا نشان داد که اکثر نقاط حاصله بالاي خط y=x واقع شدند که نشان از کم برآوردي اين مدل نسبت به مدل مبنا ميباشد. در مدل پنمن- رايت کم برآوردي نسبت به مدل مبنا در اکثر موارد با شدت کمتري مشهود بود. در دسته مدلهاي تابشي ETP هاي برآوردي مدل جنسن-هيز از آوريل تا اوت مقادير بالايي نسبت به مدل استاندارد داشتند. پراکندگي نقاط در نمودار مربوط به مدل دورنبوس –پروت نسبت به مدل جنسن-هيز بيشتر بوده که باعث کم بودن ضريب تبيين اين مدل نسبت به مدل جنسن-هيز شده است. مدلهاي دمايي کمترين مقادير متوسط شاخصهاي آماري خطاي RMSE,MAE را دارا بوده و بيشترين ضريب تبيين در بين گروههاي بکار رفته مربوط به اين مدلها بود. تطابق ETP هاي بهدستآمده از مدلهاي هارگريوز و ايوانف بعد از اعمال ضرايب رگرسيوني با نتايج حاصل از مدل استاندارد از ساير مدلها بيشتر بود.
نتايج: پس از اعمال ضرايب رگرسيوني در کليه مدلها مقادير شاخصهاي خطا بهطور قابلملاحظهاي کاهش يافتند که نشان از تأثير مثبت آن در بهبود و افزايش کارايي و عملکرد مدلها دارد. مدل هارگريوز با ضريب همبستگي معادل 965/0 و معيار R/t برابر 16/0 بالاترين مقدار را در بين تمامي مدلها، بهترين همخواني و تطابق را با مدل مبنا داشت. ميتوان مدل هارگريوز را بهويژه بعد ازلحاظ ضرايب رگرسيوني بهعنوان يک جايگزين مناسب براي مدل فائو-پنمن-مونتيث براي محاسبه ETP ايستگاه مزبور در نظر گرفت. باوجودآنکه مدل رطوبتي ايوانف شاخصهاي خطاي RMSE,MAE, MBE و معيار جاکوويدس بالايي داشت، ولي با داشتن ضريب همبستگي 963/ 0 و به دنبال آن همخواني بالا با نتايج مدل استاندارد، اين مدل بعد از مدل هارگريوز با در نظر گرفتن ضرايب رگرسيوني براي تخمين ETP ايستگاه سينوپتيک ميانه قابل پيشنهاد است.
Background and Aim: Evapotranspiration is one of the most important factors of the hydrological cycle and its estimation is essential for a wide range of research including water balance, irrigation system design and management, simulation and modeling, and water resources planning. A model should be selected that can accurately estimate evapotranspiration according to regional conditions and using minimal climatic data. The aim of this research was to investigate the efficiency of different models for estimating evapotranspiration of reference plants, considering the FAO-Penman-Monteith model as the base model, and consequently to determine the most appropriate alternative model, considering the use of minimal data at the synoptic station of Mianeh County.
Method: The study site was the Mianeh Synoptic Station. This station is located in Mianeh County. Mianeh County is located in the southeastern corner of East Azerbaijan Province. To conduct this research and estimate the evapotranspiration rate of the reference plant, several meteorological parameters such as wind speed, average percentage of sunny hours, average monthly temperature, maximum monthly temperature, minimum monthly temperature, maximum monthly relative humidity, average monthly relative humidity, minimum monthly relative humidity, air pressure, and extraterrestrial radiation of the Mianeh Synoptic Station were used. The Visual Basic programming language was used to calculate the evapotranspiration of the reference plant. To evaluate the models for calculating the evapotranspiration of the reference plant, four categories of combined models (Penman-Writh, Allen-Penman- Pruitt), radiation (Doorenbos-Pruitt and Jensen-Haise), temperature (Linacre and Hargreaves) and the Ivanof moisture model were considered. The FAO-Penman-Monteith model was considered as a standard model to evaluate the performance of other models. The efficiency of the models was evaluated using five statistical indicators: root mean square error, mean average error, mean absolute error, coefficient of determination, and Jacovides criterion.
Results: The results showed that among the combined models groups, the coefficient of determination of the Allen-Penman- Pruitt model with a value of 0.859 had a relatively good agreement compared to the Penman- Writh model. Comparison of the ETP obtained from the Allen-Penman- Pruitt model and the base model showed that most of the resulting points were above the y=x line, which indicated an underestimation of this model compared to the baseline model. In the Penman-Writh method, the underestimation compared to the base model was evident in most cases with less intensity. In the radiation models category, the estimated ETP of the Jensen-Haise model had higher values than the standard model from April to August. The scatter of points in the diagram related to the Doorenbos- Pruitt model was greater than that of the Jensen-Haise method, which caused the coefficient of determination of this method to be lower than that of the Jensen-Haise method. Temperature models had the lowest average values of the statistical error indices RMSE and MAE. The highest coefficient of determination among the groups used was also related to these models. The agreement of ETPs obtained from Hargreaves and Ivanof models after applying regression coefficients with the results obtained from the standard model was greater than that of other models.
Conclusion: After applying regression coefficients in all models, the values of error indicators were significantly reduced, which indicates its positive effect on improving and increasing the performance of the models. The Hargreaves model with a correlation coefficient of 0.965 and an R/t criterion of 0.16 had the highest value among all models and had the best agreement and conformity with the base model. The Hargreaves model can be considered as a suitable alternative to the FAO-Penman-Monteith model for calculating the ETP of the Mianeh synoptic station, especially in terms of regression coefficients. Although the Ivanof moisture model had high error indicators of RMSE, MAE, MBE and the Jakovides criterion, but with a correlation coefficient of 0.963 and subsequent high agreement with the results of the standard method, this model can be recommended after the Hargreaves model by considering the regression coefficients for estimating the ETP of the Mianeh synoptic station.
Allen, R. G., Pereira, L. S., Raes, D., Smith, M. (1998). Crop evapotranspiration- Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109.
Allen, R.G.,Pruitt, W.O.(1991). FAO-24reference evapotranspiration factors.J.Irrig.Drain.117(5):758-774.
Ayaz, A., Maddu, R., Kumar Singh, S., Shaik, R. (2021). Estimation of reference evapotranspiration using machine learning models with limited data. AIMS Geosciences, 7(3): 268–290.
Bodian, A., Malick Ndiaye, P., Bassirou Diop, S., Diop, L., Dezetter, A., Ogilvie, A., Djama, K. (2024). Evaluation and calibration of alternative methods for estimating reference evapotranspiration in the main hydrosystems of Senegal: Senegal, Gambia and Casamance River Basins. Proc. IAHS, 385, 415–421.
Doorenbos,.J., Pruitt,W.O.(1984). Crop water requirements.FAO.Irrigation and drainage paper, 4.pp:124
Ghamarnia,H., Soultani,N. (2019). Evaluating the Efficiency of Empirical Estimation of Reference Evapotranspiration(Pan Based Method) in Different Climate Conditions of Iran. Iran Water Resources Research, 14(4), 174-193. [in Persian]
Golreyhan, J., Amininia, K., Valizadeh Kamran, K., (2023). Estimation of Actual Evapotranspiration of Pasture Plants using Case Study: Ahar County). Journal of Geography and Regional Development, 21(3), 169-197. [in Persian]
Hargreaves, G.H.(1989). Accuracy of estimated reference crop evapotranspiration. J. Irrig.Drain, 115(6),1000-1008.
Ivanof, N.N. (1954) The determination of potential evapotranspiration, Izvest. Vsesoyuznogo. Geagraf. Obs. 86(2):189-201.
Jensen, M.E., Burman R.D. & Allen R.G. 1990. Evapotranspiration and irrigation water requirements.
ASCE Manuals and Report on Engineering Practices No. 70. American Society of Civil Engineers, New
York, 360 pp.
Jacovides, C.P. (1997) Reply to comment on Statistical procedures for the evaluation of evapotranspiration models, J. Agricultural water management. 3:95-9.
Khari, D., Egdernezhad, A., Ebrahimipak, N. (2023). Comparison of artificial intelligence models and xperimental models in estimating reference evapotranspiration (Case study: Ramhormoz synoptic station). Water and Soil Management and Modeling, 3(2), 112-124. [in Persian]
Landeras, G., Ortiz-Barredo, A., López, J. J. (2008). Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agricultural water management, 95(5), 553-565.
Linacre, E.T. (1977). A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agricultural Meteorology, 18(6): 409-424.
Pourasghar, F., Eslahi, M., Akbarzadeh, Y. (2020). Studying of the extreme temperature events in East Azerbaijan for 1388-1428. Journal of Climatological Research, 12(48). 143-156. [in Persian]
Raja, P., Sona, F., Surendran, U., Srinivas, C.V., Kannan, K., Madhu, M., Mahesh, P., Annepu, S. K., Ahmed, M.,Chandrasekar, K., Suguna, R.A., Kumar, V., Jagadesh, M. (2024). Performance evaluation of different empirical models for reference evapotranspiration estimation over Udhagamandalm, The Nilgiris, India. Nature portfolio, 14(1), 155-171.
Raoof, R.& Azizi Mobaser, J. (2018). Evaluation of Eighteen Reference Evapotranspiration Models under the Ardabil Climate Condition. Journal of Soil and Water Conservation Research, 24(6), 227.241. [in Persian]
Ravand, A., Shahriar Khalidi, S., Hassanabadi, D.)2022). Predicting the effects of climate change on the comfort climate of the city of Miyane using climate models (SDSM). Applied research in geographical sciences, 21(63), 251-270. [in Persian]
Sentelhas, P. C., Gillespie, T. J., Santos, E. A. (2010). Evaluation of FAO Penman–Monteith 22 and alternative methods for estimating reference evapotranspiration with missing data in Southern
Ontario, Canada. Agricultural Water Management, 97(5), 635-644.
Song, X., Lu, F., Xiao, W., Zhu, K., Zhou, Y. Xie, Z. (2019). Performance of 12 reference evapotranspiration estimation methods compared with the Penman–Monteith method and the potential influences in northeast China. Meteorological Applications, 26(1), 83-96.
Tafi, S., peyghan, K., Bagheri Khaneghahi, M., Salehipour bavarsad, T., Soltani mohamadi, A. (2021). Evaluation of fourteen methods of estimation reference evapotranspiration (Case study: Mazandaran Province). Iranian Journal of Irrigation and Drainage, 15(3), 510-520. [in Persian]
Writh, J.L. (1982).New evapotranspiration crop coefficients.J.Irrig.Drain., 108(1), 57-77.