Integrated Evaluation of Increasing Irrigation Efficiency and Reducing Discharge Impacts on Hydropower Generation of Basin Water Resources System(Case Study: Dez Irrigation Network – Dez Dam)
Subject Areas : Irrigation and Drainageبهزاد نویدی نساج 1 , نرگس ظهرابی 2 * , علی شهبازی 3
1 - دانشجوی دکترا، گروه علوم و مهندسی آب، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.
2 - دانشگاه آزاد اسلامی واحد اهواز
3 - مدیر دفتر مدلهای آب و محیط زیست، سازمان آب و برق خوزستان، اهواز، ایران
Keywords: Improvement Irrigation Efficiency, reducing Inflow, Hydropower Generation, WEAP, افزایش راندمان آبیاری, کاهش آورد, هیدروانرژی,
Abstract :
World electricity production today is heavily dependent on water resources. Studies have shown that global warming and climate changes will have significant impacts on available water resources to produce hydroelectric power. Considering that the reservoir dam in the catchment area of Dez is simultaneously a producer of hydropower and supplier of water needed for agricultural land, the aim of this study is to estimate the quantitative effect of improving the efficiency of irrigation networks and reduce inputs to the dam on the amount of annual hydropower generation by the Dez dam power plant. For this purpose, with the integrated simulation of the Dez basin to Bandeghir, the effects of improving the efficiency of 5, 10, 15 and 20 percent, as well as decreasing the river inputs at 5 and 10 percent in two short- and long horizons, were studied. The results of this study showed that in the long run, as a result of the increased demand and the increase of hydraulic structures that are now at the justification stage, the amount of hydropower generation is reduced by about 115 GWh. The results showed that improving the efficiency can increase the amount of hydropower generation between 2 and 6 GWh per year. The production of hydroelectricity was highly dependent on the Dez River inputs, so that in the scenarios, a sudden drop in hydro-energy production occurred and the amount of it decreased by 5 and 10 percent, by 140 and 296 GWh, respectively.
نصیری، ف و جمالی، س. (1395). ارزیابی عملکرد حوضه سد بختیاری در برابر سناریوهای مختلف اقلیمی، اولین کنفرانس بین المللی آب، محیط زیست و توسعه پایدار، اردبیل، دانشگاه محقق اردبیلی.
نویدی نساج، ب. (1395). ارزیابی اثرات افزایش راندمان شبکه های آبیاری و زهکشی حوضه دز بر شاخص های سیستم منابع آب، پایان نامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد اهواز، اهواز.
نویدی نساج، ب.، ظهرابی، ن. و شهبازی، ع. (1395). برآورد راندمان کل آبیاری در شبکه آبیاری و زهکشی دز طی سال های 1390 تا 1394، سومین کنفرانس بین المللی توسعه پایدار، راهکارها و چالش ها با محوریت کشاورزی ، منابع طبیعی ، محیط زیست و گردشگری، تبریز، دبیرخانه دایمی کنفرانس، https://www.civilica.com/Paper-ICSDA03-ICSDA03_054.html
وزارت نیرو، شرکت سهامی آب و برق خوزستان. (1392). مطالعات مرحله اول افزایش تراز بهرهبرداری سد شهید عباسپور، گزارش برنامهریزی منابع آب. زیستاب، کد گزارش: DA-TA-1-02.02. 100 صفحه.
Bartos, M.D. and Chester, M.V. (2015). Impacts of climate change on electric power supply in the Western United States. Nature Climate Change. 5. pp: 748-752.
Berga, L. (2016). The Role of Hydropower in Climate Change Mitigation and Adaptation: A Review. Engineering. 2 (3), pp: 313-318.
Boehlert, B., Strzepek, k.M., Gebretsadik, Y., Swanson, R., McCluskey, A., Neumann, J.E,. McFarland, J. and Martinich, J. (2016). Climate change impacts and greenhouse gas mitigation effects on U.S. hydropower generation. Applied Energy. 183, pp: 1511-1519.
Brouwer, C., Prins, K. and Heibloem, M. (1989). Irrigation water management: irrigation scheduling. FAO, Italy, 66p.
Cervigni, R., Liden, R., Neumann, J.E. and Strzepek, K.M. (2015). Enhancing the climate resilience of africa’s infrasturacture. International bank for reconstruction and development, the World Bank. Washington DC.
Dhakal, S., Sedhain, G.K. and Dhakal, S.C. (2016). Climate change impact and adaptation practices in agriculture: a case study of rautahat district, Nepal. Climate. 4 (63), pp: 1-22.
Eliasson, J. (2015). The rising pressure of global water shortages. Nature. 517 (6).
FAO. (2016). AQUASTAT Main Database, Food and Agriculture Organization of the United Nations (FAO). Website accessed on [10/08/2017 19:34].
Gao, H., Wei, T., Lou, I., Yang, Z., Shen, Z. and Li, Y. (2014). Water saving effect on integrated water resource management. Resources, Conservation and Recycling. 93, pp: 50-58.
Garrote, L., Granados, A. and Iglesias, A. (2016). Strategies to reduce water stress in Euro-Mediterranean river basins. Science of the Total Environment. 543, pp 997-1009.
Georgeson, L., Maslin, M., Poessinouw, M, and Howard, S. (2016). Adaptation responses to climate change differ between global megacities. Nature Climate Change, 6, pp: 584-588.
Hoff, H. (2011). Understanding the Nexus. Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus. (Stockholm Environ. Inst., Stockholm).
International hydropower association (IHA). (2016). Hydropower status report. England.
Khan, Z., Linares, P. and García-González, J. (2017). Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments. Renewable and Sustainable Energy Reviews. 67, pp 1123-1138.
King, C. W., Holman, A. S. and Webber, M. E. (2008). Thirst for energy. Nature Geosci. 1, pp: 283–286.
Liu, J., Zhao, D., Gerbens-Leenes, P., Guan, D. (2015). China’s rising hydropower demand challenges water sector. Nature Cliamte Change. Scientific Reports 5, Article number: 11446.
Liu, D. L., Zeleke, K.T., Wang, B., Macadam, I., Scott, F, and Martin, R.J. (2017). Crop residue incorporation can mitigate negative climate change impacts on crop yield and improve water use efficiency in a semiarid environment. European Journal of Agronomy. 85, pp: 51-68.
Liu, J., Wang, Y., Yu, Z., Cao, X., Tian, L., Sun, S. and Wu, P. A. (2017). Comprehensive analysis of blue water scarcity from the production, consumption, and water transfer perspectives. Ecological Indicators. 72, pp: 870-880.
Majone, B., Villa, F., Deidda, R. and Bellin, A. (2016). Impact of climate change and water use policies on hydropower potential in the south-eastern Alpine region. Science of the Total Environment. 543 (B), pp: 965-980.
Multsch, S., Shamy, M.E.E., Batarseh, S., Seid, A.H., Frede, H.G. and Breuer, L. (2017). Improving irrigation efficiency will be insufficient to meet future water demand in the Nile Basin. Journal of Hydrology: Regional Studies. 12, 315-330
Nkhonjera, G.K. (2017). Understanding the impact of climate change on the dwindling water resources of South Africa, focusing mainly on Olifants River basin: A review. Environmental Science & Policy. 71, pp: 19-29.
Obahoundje, S., Antwi Ofosu, E., Akpoti, K. and Kabo-bah A. T. (2017). Land Use and Land Cover Changes under Climate Uncertainty: Modelling the Impacts on Hydropower Production in Western Africa. Hydrology. 4(1).
O'Neill, B., Oppenheimer, M., Warren, R., Hallegatte, S., Kopp, R.E., Pörtner, H.O., Scholes, R., Birkmann, J., Foden, W., Licker, R., Mach, K.J., Marbaix, P., Mastrandrea, M.D., Price, J., Takahashi, K., van Ypersele, J. and Yohe, G. (2017). IPCC reasons for concern regarding climate change risks. Nature Climate Change. 7, pp: 28-37.
Rothausen, S. G. S. A. and Conway, D. (2011). Greenhouse-gas emissions from energy use in the water sector. Nature Climate Change. 1, pp: 210–219.
Shang, Y., Lu, S., Ye, Y., Liu, R., Shang, L., Liu, C., Meng, X., Li, X. and Fan, Q. (2018). China’ energy-water nexus: Hydropower generation potential of joint operation of the Three Gorges and Qingjiang cascade reservoirs. Energy. 142, pp: 14-32.
Sieber J. and Purkey, D. (2015). Water Evaluation and planning system (WEAP) User Guide for WEAP. Stockholm Environment Institute, U.S. Center, 400p.
Spalding-Fecher, R., Chapman, A., Yamba, F., Walimwipi, H., Kling, H., Tembo, B., Nyambe, I. and Cumamba, B. (2016). The vulnerability of hydropower production in the Zambezi River Basin to the impacts of climate change and irrigation development. Mitigation and Adaptation Strategies for Global change. 21 (5), pp: 721-742.
Spalding-Fecher, R., Joyce, B. and Winkler, H. (2017). Climate change and hydropower in the Southern African Power Pool and Zambezi River Basin: System-wide impacts and policy implications. Energy Policy. 103, pp: 84-97.
Thornton, P.K. and Herrero, M. (2015). Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nature Climate Change. 5, pp: 830-836.
Uhorakeye, T. and Möller, B. (2017). Impacts of expected climate change on hydropower generation in Rwanda. African Journal of Engineering Research. 5(3), pp: 83-96.
Van vliet, M.T.H., Wiberg, D., Leduc, S. and Riahi, K. (2016). Power-generation system vulnerability and adaptation to changes in climate and water resources. Nature Climate Change. 6. pp: 375-380.
Zhange, Y., Gu, A., Lu, H. and Wang, W. (2017). Hydropower Generation Vulnerability in the Yangtze River in China under Climate Change Scenarios: Analysis Based on the WEAP Model. Sustainability. 9(11).