مقایسه روشهای شبکهی عصبی مصنوعی و SDSM در ریزمقیاس کردن اندازهی بارش سالانه-ی شبیهسازی شده با HadCM3 (مطالعهی موردی: کرمان، راور و رابر)
محورهای موضوعی : برگرفته از پایان نامهمریم رضائی 1 , محمد نهتانی 2 * , علیرضا مقدمنیا 3 , علیجان آبکار 4 , معصومه رضائی 5
1 - دانش آموخته کارشناسی ارشد، گروه مرتع و آبخیزداری ، دانشگاه زابل
2 - استادیار، گروه مرتع و آبخیزداری دانشگاه زابل
3 - دانشیار، گروه احیای مناطق خشک و کوهستانی ، پردیس کشاورزی و منابع طبیعی دانشگاه تهران
4 - کارشناس ارشد مرکز تحقیقات کشاورزی و منابعطبیعی استان کرمان
5 - مربی گروه مهندسی برق و کامپیوتر، دانشگاه سیستان و بلوچستان
کلید واژه: تغییر اقلیم, بارندگی, ریزمقیاس کردن, شبیه HadCM3,
چکیده مقاله :
امروزه این باور وجود دارد که فعالیتهای انسانی، از جمله تغییر در پوشش و کاربری اراضی، موجب افزایش غلظت گازهای گلخانهای میگردد، که پیامد آن برهم خوردن توازن کارمایه، گرم شدن اتمسفر، و در نهایت پدیدهی تغییر اقلیم میباشد. پیشبینی بارندگی یکی از مهمترین مسائل در برنامهریزی و مدیریت منابع آب میباشد. در این پژوهش، اندازهی بارندگی ایستگاههای کرمان، راور و رابر با استفاده از خروجیهای شبیهHadCM3 ، تحت نمایشنامهی A2، و از طریق شبیههای ریز مقیاس کنندهی SDSM و شبکهی عصبی مصنوعی، برای سه دورهی 2039-2010، 2069-2040 و 2099-2070 میلادی پیشبینی شده است. ابتدا دورهی آماری 2001-1971، به عنوان دورهی پایه انتخاب شد. در ادامه، با توجه به معیارهای آماری، نتایج حاصل از دو شبیه مورد ارزیابی و مقایسه قرار گرفتند. یافتهها بیانگر عملکرد بالاتر شبیه شبکهی عصبی در ایستگاههای کرمان و راور میباشند. اندازهی بارندگی سالانه در ایستگاههای کرمان، راور و رابر تا سال 2099، در شبیه شبکهی عصبی به ترتیب 86/12، 68/11 و %39/11 و در شبیه SDSM 89/0، 48/18 و %55/1 نسبت به دورهی پایه کاهش می یابند.
Nowadays, it is believed that anthropogenic activities, such as changes in land use and deforestation, have resulted in atmospheric concentrations of greenhouse gases. One consequence of this ruinous activity, is an alteration of the energy balance that tends to warm the atmosphere that has resulted in climate change. Precipitation forecast is one of the most important element in water resources management and planning. In this study, precipitation depth of Kerman, Ravar and Rabor Stations have been predicted using the HadCM3 model outputs under the A2 scenario, SDSM downscaling models and artificial neural network, for three periods: 2010-2039, 2040-2069 and 2070-2099. Precipitation data for the 1971- 2001 period were selected as the base one. The results obtained by using the two models were evaluated and compared according to the statistical criteria. The artificial neural network model showed superior performance for the Kerman and Ravar stations. Annual precipitation of Kerman, Ravar and Rabor stations by 2099, using the AMM model decreases by 12.86, 11.68, and 11.39 percentage points, respectively. These are for 0.89, 18.48, and 1.55 percentage points, respectively, for the same year.
31.Aksoy, H., and A. Dahamsheh, 2009. Artificial neural network models for forecasting monthly precipitation in Jordan. Stoch Environ Res Risk Assess. 23: 917-931.
32.Alison, L. K., G.J. Richard and S. R. Nicholas 2004. RCM rainfall for UK flood frequency estimation Climate change results. J Hydrol. 318: 163-172.
33.Gordon, C., C., Cooper, C.A., Senior, H., Banks, J. M., Gregory, T.C., Johns, J.F. Mitchell, and R. A.,Wood. 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dy. 16: 147-168.
34.Harpham, C., and R. L.Wilby. 2005. Multi-site downscaling of heavy daily precipitation occurrence and amounts. J Hydrol. 312: 235-255.
35.Khan, MS, P., Coulibaly. and Y. b., Dibike. 2006. Uncertainty analysis of statistical downscaling methods. J Hydrol. 319: 357-382.
36.Marier, H.R., and G.C.,Dandy. 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and application. Environ. Mode. and Soft. 15: 101-124.
37.McCulloch, W.S. and W. Pitts. 1943. A logic calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5: 115–133.
38.Wilby, R.L. and C.W. Dawson. 2008. Using SDSM Version 4.2- A decision support tool for the assessment of regional climate change impacts. User manual. 94 P.
39.Wilby, R.L. and M. D. Dettinger, 2000. Stream flow changes in Sierra Nevada, California, simulated using a statistically downscaled general circulation model scenario of climate change: Linking climate change to land surface change. Kluwer Academic Publishers,the Netherlands. 120 P.
40.Xu, C.Y. 1999. From GCMs to river flow: A review of downscaling methods andhydrologic modeling approaches. Prog phys Geogr 23: 229-249.
41.Zhang, X, W., Liu. Z, Li. and J. Chen, 2005. Trend and uncertainty analysis of simulated climate change impacts with multiple GCMs and emission scenarios method. Clim Res. 28: 109-122.