مدل سازی حذف فلزات سنگین از پساب صنعتی با استفاده از خاکستر و پوسته برنج با منطق فازی
محورهای موضوعی : برگرفته از پایان نامهعبدالحمید انصاری 1 * , صادق عامری 2
1 - انصاری، عبدالحمید،استادیار گروه مهندسی نفت، واحد لامرد، دانشگاه آزاد اسلامی،لامرد، ایران
2 - عامری، صادق، دانش آموخته کارشناسی ارشد رشته مهندسی شیمی، واحد لامرد، دانشگاه آزاد اسلامی،لامرد، ایران
کلید واژه: پساب, منطق فازی, تصفیه بیولوژیکی, حذف فلزات سنگین, پوسته برنج,
چکیده مقاله :
چکیده
مقدمه: گسترده شده صنایع در جهان، محدودیت منابع و مصرف روز افزون آب محققین را برآن داشته است که تصفیه فاضلابها، نسبت به گذشته مورد توجه بیشتر قرار گیرند. تصفیه فاضلاب، به منظور تثبیت مواد آلی تولیدی، استفاده مجدد از آب و مواد جامد ناشی از تصفیه فاضلاب و همچنین قابل تخلیه کردن پساب در محیط و محافظت از محیط زیست انجام میپذیرد.
روش: این تحقیق با روش مدلسازی اطلاعات تصفیه بیولوژیکی با استفاده از منطق فازی مورد بررسی قرار گرفته است. یکی از روشهای مقرون به صرفه برای تصفیه پساب بهداشتی پالایشگاه مدلسازی با استفاده از روش منطق فازی است. سیستمهای استنتاج فازی یک چهار چوب محاسباتی پرطرفدار بر مبنای مفهوم مجموعههای فازی، قواعد if-then و استدلال فازی هستند. این دسته از سیستمها دارای کاربرد موفقی در زمینههای کنترل خودکار، طبقهبندی دادهها، تحلیل تصمیم، سیستمهای خبره، پیشبینی سریهای زمانی، رباتیک و تشخیص الگوها هستند. در این تحقیق از نرمافزارMATLAB R2012 برای مدلسازی منطق فازی به روش ممدانی استفاده گردیده است. اطلاعاتی که از جدولها در مقاله " H.A. Hegazi. 2013 "به دست آمده است.
یافته ها: با بررسی کلیهی نمودارها و مدل دریافتیم که مدلسازی انجام شده قابل اتکا بوده و میتوان از آن برای بدست آوردن نتیجهی آزمایشهای دیگر بدون انجام آزمایشات استفاده نمود. همچنین بهترین شرایط عملیاتی را میتوان غلظتهای جاذب پوسته برنج 50، 60، 60، 60، 60، برای حذف فلزات Fe، Pb، Cd، Cu و Ni نامید. برای جاذب خاکستر غلظت های جاذب 60، 60، 60، 50 و 60 به ترتیب برای فلزات غلظت بهینه جاذب نامید. همچنین از بین دو جاذب، پوسته برنج جاذب بهتری میباشد.
نتیجه گیری: دقت مدل در حدود 95% به دست آمد و قابل اعتماد بودن مدل را ثابت کرد. همچنین میتوان نتیجه گرفت که خاکستر و پوسته برنج به عنوان جاذبهای طبیعی بسیار خوب عمل کرده و بازده حذف تا حدود 90% به بالا داشته است.
Abstract
Introduction: The expansion of industries in the world, the limitation of resources and the increasing consumption of water have led researchers to pay more attention to wastewater treatment than in the past. Wastewater treatment is done in order to stabilize the produced organic matter, reuse water and solid materials resulting from wastewater treatment, and also to be able to discharge the waste water into the environment and protect the environment.
Methods: This research has been investigated with the method of biological treatment information modeling using fuzzy logic. One of the cost-effective methods for purifying the sanitary wastewater of the refinery is modeling using the fuzzy logic method. Fuzzy inference systems are a popular computing framework based on the concept of fuzzy sets, if-then rules, and fuzzy reasoning. This category of systems has a successful application in the fields of automatic control, data classification, decision analysis, expert systems, time series prediction, robotics and pattern recognition. In this research, MATLAB R2012 software has been used for fuzzy logic modeling by Mamdani method. Information obtained from the tables in the article "H.A. Hegazi. 2013".
Findings: By examining all the diagrams and models, we found that the modeling done is reliable and can be used to obtain the results of other experiments without conducting experiments. Also, the best operating conditions can be called rice husk adsorbent concentrations of 50, 60, 60, 60, 60, for the removal of Fe, Pb, Cd, Cu and Ni metals. For the ash absorbent, the absorbent concentrations of 60, 60, 60, 50, and 60, respectively, were called optimal absorbent concentrations for metals. Also, among the two absorbents, rice husk is a better absorbent. The accuracy of the model was reached around 95% and proved the reliability of the model. It can also be concluded that ash and rice husk worked very well as natural absorbents and the removal efficiency was up to 90%.
1. GHayseri, A. Kazemi, M A. Farazmand, A. 2003. Determining the efficiency of the wastewater treatment plant in a pasteurized milk company. Isfahan Water and Wastewater Journal, 46(12): 65-60.
2. Mohammadyari, N. Balador,A. Performance of MBBR in the Treatment of Combined Municipal and Industrial Wastewater A Case Study: Mashhad Sewage Treatment Plant of Parkandabad. Isfahan Water and Wastewater Journal. 46-38: (19)65
3. Norani,V. Hasanzadeh, Y.Komasi,M. Sharafi,E. Precipitation and runoff modeling with artificial neural network wavelet hybrid model. The 4th National Congress of Civil Engineering, University of Tehran, Tehran.
4. Norani,V. Salehi, k.2009. Precipitation and runoff modeling using wavelet adaptive fuzzy neural network method and its comparison with wavelet neural network and adaptive fuzzy neural network methods. The 8th International Congress of Civil Engineering, Shiraz University, Shiraz, Iran
5. Nadafi, k. Vaezi, F. Farzadkia,M.Kimeaetlab,A. 2005. Investigating the performance of aeration lagoons in the wastewater treatment of Boali Hamedan industrial town Isfahan Journal of Water and Wastewater, 53-47:(16)54
6. Vaqefpour,H. Ahmadpour,A.2010. Investigating conventional methods of biological treatment of industrial wastes. The first conference on wastewater and waste management in oil and energy industries, Tehran.
7. B.Rhman , M.Pakizeh , M.Esfandyari , F.Heshmatnezhad , A.Maskooki. 2011. Fuzzy modeling and simulation for lead removal using micellar-enhanced ultrafiltration (MEUF), J.Hazard . Mater, 192: 585-592.
8. B.Rahmanian , M.Pakizeh , M.Esfandyari , A.Maskooki . 2011. Fuzzy Inference system for Modeling of Zink Removal using Micellar-Enhanced ultrafiltration, Sep. Sic .Tech.
9. Ernest M , Thomas MB , Antonio D . 2002. State detection and control of overload sin the anaerobic wastewater treatment using fuzzy logic. Water Res, 36:201-211.
10. Gabrielalo , Sara ob. , Miguel BZ . 2008. Identification of waste packaging profiles using fuzzy logic. Resources, conservation and Recycling 52: 1022-1030.
11. Hamoda, M.F. and Abd-El-Bary, M.F. 1987. Operating characteristics of the aerated submerged fixed film (ASFF) bioreactor. Water Research, 21(8): 939-947.
12. J.Sargolzaei, M. Khoshnoodi, N.Saghatolesami, M.Mousavi. 2008. Fuzzy inference system to modeling of cross flow milk ultrafiltration, Applied. Soft. Computing, 8: 456-465.
13. Khan, Faj., Zain, Kims., Qamar, Ustra. 2009. Biodegradation of phenol by aerobic granulation technology. J Water Sci Technol, 59(2): 273-278.
14. Khoshfetrat, A.B., Nikakhtari, H., Sadeghifar, M. and Shakerkhatibi, M. 2011. “Influence of organic loading and aeration rates on performance of a lab-scale up flow aerated submerged fixed-film bioreactor”. Process Safety and Environmental Protection, 89(3):193–197.
15. M.A Takassi , M.K Salooki ,M.Esfandyari. 2011. Fuzzy model prediction of co (III) Al2o3 catalytic. Behavior in fischer Tropsch synthesis, J.Net.Gas chem, 20: 603-610.
16. M.Eshrati, M.Ranjbaran . 2016. Prediction of water-soluble polymer Drag Reduction performance in Multiphase Flow using fuzzy logic Technique. Intl journal of Advances in chemical Engg., &Biological sciences (IJAEBS)Vol. 3, Issue1 ISSN2349-1507 EISSN 2349-1515.
17. N. Ghaffour.2004. modeling of fouling phenomena in cross- flow ultrafiltration of suspensions containing suspended solids and oil droplets, desalination, 167 : 281-291.
18. Park, T.J., Lee, K.H., Kim, D.S. and Kim, C.W. 1996. Petrochemical wastewater treatment with aerated submerged fixed-film reactor (ASFFR) under high organic loading rate. Water Science and Technology, 34(10): 9-16.
19. S.Chang, sh. Mathur. 2010. Modeling uncertainty Analysis in flow and solute Transport model using Adaptive Neuro fuzzy Interface system and particle swarm optimization, J.civil. Eng.
20. V.Karthik , S.DasGupta, S.De. 2002. Modeling and simulation of osmotic pressure controlled electro- ultrafiltration in a cross – flow system, J. member. Sci, 199: 29-40.
21. W.Lamas . 2013. Fuzzy thermos economic optimization applied to a small waste water treatment plant. Renewable and Sustainable Energy Reviews, 19: 214-219.
_||_