بررسی عددی موقعیّت و طول پرش هیدرولیکی در سرریز سرسرهای
محورهای موضوعی : برگرفته از پایان نامهمینا روزگار 1 , ناصر طالب بیدختی 2 , سید محراب امیری 3
1 - کارشناسی ارشد سازه های هیدرولیکی دانشگاه شیراز
2 - استاد گروه آب و محیط زیست دانشگاه شیراز
3 - استادیار گروه آب و محیط زیست دانشگاه شیراز
کلید واژه: نرمافزار فلوئنت, طول پرش هیدرولیکی, روش حجم سیال,
چکیده مقاله :
طول پرش هیدرولیکی و موقعیت آن فراسنجهای مهمی هستند که طول حوضچه آرامش را، تحت تاثیر قرار می دهند. همچنین به دلیل هزینۀ فراوانی که صرف ساخت این سازه میگردد میبایست برای کاهش طول پرش هیدرولیکی و در نتیجه کاهش طول حوضچه آرامش از تمامی امکانات و روشها استفاده کرد. در این تحقیق پرش هیدرولیکی در سرریز سرسرهای با استفاده ازنرمافزار فلوئنت، مورد شبیهسازی قرار گرفتهاست .همچنین، برای حل معادلات حاکمه از روش حجم محدود و برای ارزیابی آشفتگی جریان از الگوی معیار استفاده شده است. علاوه بر این از شبکهبندی منظم در یک شرایط مرزی مشخص استفاده گردیده و روش حجم سیال(VOF) برای حل سطح آزاد جریان بهکار گرفته شده است. نتایج به دست آمده نشان دادند که در سرریزهای سرسرهای با افزایش بده در محدوده معین مورد آزمایش، به ازای شیب ثابت سرریز، طول پرش هیدرولیکی تا حدود 120% افزایش یافته و همچنین با افزایش شیب سرریز در محدودۀ معین مورد آزمایش، به ازای بده ثابت و طول ثابت سرریز، طول پرش هیدرولیکی تا حدود 43% کاهش مییابد. همچنین نتایج حاصل حاکی از آنند که افزایش بده وشیب هر کدام باعث به تاخیر افتادن مکانی پرش هیدرولیکی میشود تا جایی که در الگو های در نظر گرفته محل شروع پرش با توجه به شرایط، در محدوده ای به اندازۀ روی شیب تا خارج از حوضچه اتفاق می افتد.
One of the most effective strategies for energy dissipation of hydraulic structures is hydraulic jump .The position of hydraulic jump play an important role in design of stilling basin. In this study, hydraulic jump in ogee spillways were simulated by using fluent software. The governing equations were solved through finite volume method and the standard model was applied for estimating the turbulence flow. The equations were discretized in structured mesh accommodate the well-defined boundaries and the volume of fluid (VOF) method was introduced to solve the complex free-surface problem. The study examined the effect of increasing the discharge and the slope on the hydraulic jump position and lentgh. the results suggest that increasing the slope and discharge caused the spatial delay in hydraulic jump. It was found that in ogee spillway with a constant slope, the hydraulic jump length increases up to 120% when the discharge increases. Additionally, for a certain discharge and a constant length of spillway, increasing the slope of spillway decreases the hydraulic jump length up to 43%.
1) آصفی، م.، و ع. ضیائی، 1390. شبیه سازی عددی دو بعدی پرش هیدرولیکی روی سطوح شیبدار معکوس همراه با پله در انتها با نرم افزار فلوئنت. ششمین کنگره ملی عمران. سمنان. 1-7.
2) بدیعزادگان، ر.، ک.، اسماعیلی، ر.، فغفورمغربی، و م.، صانعی، 1390. مشخصات پرش هیدرولیکی در حوضچه های آرامش کانال های آبیاری با بستر موجدار. آب وخاک 25
3) مینایی، ا.، م.، قدسیان، و م.، مهرآیین، 1395. بررسی آزمایگاهی پرش هیدرولیکی در حوضچه آرامش با آستانه پلکانی. عمران مدرس
4) نیسی، ک. و م.، شفاعی بجستان، 1388. بررسی عمق مزدوج پرش هیدرولیکی تحت تاثیر اجزای زبر کف. دانش اب و خاک 19
5) نیسی، ک.، م.، شفاعی بجستان، م.، قمشی، و م.، کاشفی پور، 1392. بررسی مشخصات هیدرولیکی در حوضچه آرامش واگرای ناگهانی با بستر زبر. علوم و مهندسی آبیاری. 37(2). 83-93
6) Abbaspour, A., Hosseinzadeh Dalir, A., Farsadizadeh, D. and Sadraddi, N. 2009. Effect of sinusoidal corrugated bed on hydraulic jump characteristics. Hydro-environmental Research 3, 109-117
7) Carvalho, R.F., Lemos, C.M., and Ramos, C.M. 2010. Numerical computation of the flow in hydraulic jump stilling basins. Hydraulic research 46: 739-752.
8) Chanson, H., and Toombes, L. 2001. Experimental investigation of air entrainment in transition skimming flows down a stepped chute application to embankment overflow stepped spillways.URL:http://www.uq.edu.au/~e2hchans, Research Report No.CE 158, pp. 1-40.
9) Cherhabil, S. and Debabeche, M. 2016 Experimental study of sequent depths ratios of hydraulic jump in sloped trapezoidal channels. 6 th International Symposium on Hydraulic Structures
10) Ead, S. and Rajaratnam, N. 2002. Hydraulic jumps on corrugated beds. Hydraulic Engineering ASCE 128(7), 656-663
11) Farhoudi, j. and Khalili Shayan, H. 2014. Theoretical criterion for stability of free hydraulic jump on adverse stilling basins. Hydraulic Structures 1: 53-66.
12) French, R. 1987. Open channel hydraulic. McGraw-Hill book company: 89-101
13) Fluent. Inc\help\index.htm
14) Gonzalez, A., and Bombardelli, F. 2005. Two-phase flow theory and numerical models for hydraulic jumps, Including air entrainment in Proceedings Of The International Association for Hydraulic Research Vol 1: 28-29.
15) Gohari, A. and Farhoodi, J. 2009. The characteristics of hydraulic jump on rough bed stilling basins. water engineering for sustainable environment, Vabcouver,British Columbia, pp.9-14
16) Karbasi, M. 2016. Estimation of classical jump length teaching-learning based optimization algoritm. J. Mater. Environ. Sci. 7 (8) 2947-2954
17) Rajaratnam, N. 1968. Hydraulic jump on rough bed. Engineering Institute of Canada 11, 1-8
18) Sarker, M.A. and Rhodes, D.G. 2002. Physical Modeling and CFD Applied to Hydraulic Jump, Cranfield University Report.
19) Sarker, M. and Rhodes, D. 2002. Physical Modeling and CFD Applied to Hydraulic Jump.
20) Tokyay, N. 2005. Effect of channel bed corrugations on hydralic jumps. Global Climate Change Conference, 408-416
21) Zhao, Q. and Misra, S. Numerical study of a turbulent hydraulic jump. 17th Engineering Mechanics Conference, New York
_||_