پیشبینی عمق موضعی آبشستگی پایههای پل با استفاده از ترکیب الگوریتمهای بهینهسازی ازدحام ذرات و گرگ خاکستری
محورهای موضوعی : تحلیل، طراحی و ساخت سازه های آبی
1 - دانشکده مهندسی عمران، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشکده مهندسی عمران، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: آبشستگی موضعی, الگوریتم ازدحام ذرات- گرگ خاکستری, پایههای پل, دادههای صحرایی ,
چکیده مقاله :
ساخت پایههای پل یک کار پرهزینه بوده و آبشستگی در نزدیکی پایههای پل باعث ناپایداری آنها و در صورت عدم اتخاذ راهکاری مناسب در نهایت موجب تخریب این سازه میگردد. بنابراین مطالعه دقیق جهت شناخت این پدیده و عوامل موثر بر آن الزامی است. لذا در این تحقیق، بر اساس مجموعه وسیعی از دادههای صحرایی برای اندازهگیری عمق آبشستگی موضعی پایههای پل، معادلهای متشکل از پارامترهای مؤثر بر عمق آبشستگی پیشنهاد گردید، برای تعیین این رابطه یک مدل بهینهسازی تعریف شد و متغیرهای تصمیم این مدل را با الگوریتم فرا ابتکاری ترکیبی گرگ خاکستری- ازدحام ذرات (HPSGWO) برآورد گردید. برای این منظور روابط مختلفی برای تعیین عمق آبشستگی تعیین شد. بر اساس معادلههای مختلف تعیین شده، عمق آبشستگی موضعی پایههای پل محاسبه شد. برای ارزیابی روابط از شاخصهای اندازهگیری خطا RMSE، RSR، NSE، PBIAS و CC استفاده شد. با مقایسه شاخصهای اندازهگیری خطا برای روابط بدست آمده، بهترین ترکیب ورودی از پارامترها و رابطه ریاضی بهترین مدل برای محاسبه عمق آبشستگی تعیین شد. این شاخصها برای مدل برتر به ترتیب برابر m504/0، 52/0، 73/0، 7/7، 734/0 است. این مقادیر نشان میدهد معادله ارائه شده در این تحقیق برای محاسبه عمق آبشستگی مناسب و نسبت به روشهای تجربی ارائه شده قابل اعتمادتر است. در رابطه پیشنهادی عمق آبشستگی با عدد فرود و نسبت عرض پایه به عمق آب نسبت مستقیم و با اندازه متوسط ذرات بستر نسبت به عمق آب نسبت معکوس دارد.
Construction of bridge piers is expensive, and scouring near them can lead to instability. Without a suitable solution, it can ultimately result in the structure’s destruction. Therefore, a detailed study is required to understand this phenomenon and the factors affecting it. This research entails utilizing extensive field data to measure the local scour depth around bridge piers. It proposes an equation comprising scour-affecting parameters and defines an optimization model to establish this relationship. The decision variables of this model were determined using a meta-heuristic algorithm called the hybrid gray wolf-particle swarm (HPSGWO). For this purpose, various relationships were established to ascertain scour depth, and subsequently, the local scour depth of the bridge piers was calculated, based on these equations. Root Mean Square Error (RMSE), Relative Square Root (RSR), Nash-Sutcliffe Efficiency (NSE), Percent Bias (PBIAS), and Correlation Coefficient (CC) were employed as error measurement indices to evaluate the relationships. Upon comparison of the error measurement indices for the obtained relationships, the best input parameter combination and mathematical relationship for calculating scour depth were determined. These indices for the superior model are equal to 0.504 m, 0.52, 0.73, 7.7%, and 0.734 for RMSE, RSR, NSE, PBIAS, and CC, respectively. These values show that the equation presented in this research is suitable for calculating scour depth and is more reliable than the presented experimental methods. In the proposed relationship, scour depth is directly proportional to the Froude number and the ratio of base width to water depth while inversely proportional to the average size of bed particles to water depth.
Annandale, G. (1995). Erodibility. Journal of hydraulic research, 33(4), 471-494. https://doi.org/10.1080/00221689509498656
Arneson, L., Zevenbergen, L., Lagasse, P., & Clopper, P. (2012). Evaluating scour at bridges (HEC-18). Technical Rep. No. FHWA (Federal Highway Administration) HIF-12-003, Washington, DC.
Arunachalam, K. (1965). Scour around bridge piers. Journal of the Indian Roads Congres. 29)2), 189–207.
Azamathulla, H. M., Ghani, A. A., Zakaria, N. A., & Guven, A. (2010). Genetic programming to predict bridge pier scour. Journal of Hydraulic Engineering, 136(3), 16. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000133
Bateni, S. M., Borghei, S., & Jeng, D.-S. (2007). Neural network and neuro-fuzzy assessments for scour depth around bridge piers. Engineering Applications of Artificial Intelligence, 20(3), 401-414. https://doi.org/10.1016/j.engappai.2006.06.012
Benedict, S. T., & Caldwell, A. W. (2014). A pier-scour database: 2,427 field and laboratory measurements of pier scour. US Geological Survey Data Series, 845. https://doi.org/10.3133/ds845
Boothroyd, R. J., Williams, R. D., Hoey, T. B., Tolentino, P. L., & Yang, X. (2021). National-scale assessment of decadal river migration at critical bridge infrastructure in the Philippines. Science of the Total Environment, 768, 144460. https://doi.org/10.1016/j.scitotenv.2020.144460
Carnacina, I., Pagliara, S., & Leonardi, N. (2019). Bridge pier scour under pressure flow conditions. River Research and Applications, 35(7), 844-854. https://doi.org/10.1002/rra.3451
Dang, N. M., Tran Anh, D., & Dang, T. D. (2021). ANN optimized by PSO and Firefly algorithms for predicting scour depths around bridge piers. Engineering with Computers, 37(1), 293-303. https://doi.org/10.1007/s00366-019-00824-y
Dey, S., Chiew, Y.-M., & Kadam, M. S. (2008). Local scour and riprap stability at an abutment in a degrading bed. Journal of Hydraulic Engineering, 134(10), 1496-1502.
Ebtehaj, I., Bonakdari, H., Moradi, F., Gharabaghi, B., & Khozani, Z. S. (2018). An integrated framework of extreme learning machines for predicting scour at pile groups in clear water condition. Coastal Engineering, 135, 1-15. https://doi.org/10.1016/j.coastaleng.2018.10.00
Gao, D., Posada, G., & Nordin, C. F. (1993). Pier scour equations used in China. Hydraulic engineering, ASCE, 1031-1036.
Hassan, W. H. (2019). Application of a genetic algorithm for the optimization of a location and inclination angle of a cut-off wall for anisotropic foundations under hydraulic structures. Geotechnical and Geological Engineering, 37(2), 883-895. https://doi.org/10.1007/s10706-018-0658-9
Jamei, M., & Ahmadianfar, I. (2020). Prediction of scour depth at piers with debris accumulation effects using linear genetic programming. Marine Georesources & Geotechnology, 38(4), 468-479. https://doi.org/10.1080/1064119X.2019.1595793
Johnson, P. A. (1992). Reliability-based pier scour engineering. Journal of Hydraulic engineering, 118(10), 1344-1358. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:10(1344)
Karkheiran, S., Kabiri-Samani, A., Zekri, M., & Azamathulla, H. M. (2021). Scour at bridge piers in uniform and armored beds under steady and unsteady flow conditions using ANN-APSO and ANN-GA algorithms. ISH Journal of Hydraulic Engineering, 27(sup1), 220-228. https://doi.org/10.1080/09715010.2019.1617796
Keshavarzi, A., Melville, B., & Ball, J. (2014). Three-dimensional analysis of coherent turbulent flow structure around a single circular bridge pier. Environmental Fluid Mechanics, 14(4), 821-847. https://doi.org/10.1007/s10652-013-9332-1
Kult, J., Choi, W., & Choi, J. (2014). Sensitivity of the Snowmelt Runoff Model to snow covered area and temperature inputs. Applied Geography, 55, 38-3. https://doi.org/10.1016/j.apgeog.2014.08.011
Laursen, E. M., & Toch, A. (1956). Scour around bridge piers and abutments (Vol. 4). Iowa Highway Research Board Ames, IA.
Link, O., García, M., Pizarro, A., Alcayaga, H., & Palma, S. (2020). Local scour and sediment deposition at bridge piers during floods. Journal of Hydraulic Engineering, 146(3), 04020003. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001696
Maddison, B. (2012). Scour failure of bridges. Proceedings of the Institution of Civil Engineers-Forensic Engineering, 165(1), 39-52. https://doi.org/10.1680/feng.2012.165.1.39
Majedi Asl, M., & Valizadeh, S. (2019). Application of SVM Algorithm in Predicting Vertical Pier Scour Depth [Research]. Journal of Water and Soil Science, 23(4), 165-181. https://doi.org/10.47176/jwss.23.4.37872
Melville, B., & Sutherland, A. (1988). Design method for local scour at bridge piers. Journal of Hydraulic Engineering, 114(10), 1210-1226. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:10(1210)
Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007
Mohamed, T. A., Noor, M., Ghazali, A. H., & Huat, B. (2005). Validation of some bridge pier scour formulae using field and laboratory data. American Journal of Environmental Sciences, 1(2), 119-125. https://doi.org/10.3844/ajessp.2005.119.125
Mohammadpour, R. (2017). Prediction of local scour around complex piers using GEP and M5-Tree. Arabian Journal of Geosciences, 10(18), 1-11. https://doi.org/10.1007/s12517-017-3203-x
Moreno, M., Maia, R., Couto, L., & Cardoso, A. H. (2017). Subtraction approach to experimentally assess the contribution of the complex pier components to the local scour depth. Journal of Hydraulic Engineering, 143(4), 06016030
Najafzadeh, M., Barani, G.-A., & Hessami-Kermani, M.-R. (2015). Evaluation of GMDH networks for prediction of local scour depth at bridge abutments in coarse sediments with thinly armored beds. Ocean Engineering, 104, 387-396. https://doi.org/10.1016/j.oceaneng.2015.05.016
Qaderi, K., Javadi, F., Madadi, M. R., & Ahmadi, M. M. (2021). A comparative study of solo and hybrid data driven models for predicting bridge pier scour depth. Marine Georesources & Geotechnology, 39(5), 589-599. https://doi.org/10.1080/1064119X.2020.1735589
Rady, R. A. E.-H. (2020). Prediction of local scour around bridge piers: artificial-intelligence-based modeling versus conventional regression methods. Applied Water Science, 10(2), 1-11. https://doi.org/10.1007/s13201-020-1140-4
Rezazadeh, r., barani, g., & naseri, a. (2019). Application of Artificial Neural Networks in Estimation of Scour Depth around the Bridge Pier with Sticky Sediments. Journal of Hydraulics, 14(1), 141-149. https://doi.org/10.30482/jhyd.2019.139956.1307
Riahi-Madvar, H., Dehghani, M., Seifi, A., Salwana, E., Shamshirband, S., Mosavi, A., & Chau, K.-w. (2019). Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry. Engineering Applications of Computational Fluid Mechanics, 13(1), 529-550. https://doi.org/10.1080/19942060.2019.1618396
Richardson, E., & Davis, S. (2001). Evaluating scour at bridges: Hydraulic engineering circular No. 18. Rep. FHwA NHI, 01-001.
Şenel, F. A., Gökçe, F., Yüksel, A. S., & Yiğit, T. (2019). A novel hybrid PSO–GWO algorithm for optimization problems. Engineering with Computers, 35(4), 1359-1373. https://doi.org/10.1007/s00366-018-0668-5
Sheppard, D., Melville, B., & Demir, H. (2014). Evaluation of existing equations for local scour at bridge piers. Journal of Hydraulic Engineering, 140(1), 14-23. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000800
Sheppard, D., & Renna, R. (2005). Bridge scour manual. florida department of transportation. 605 Suwannee Street. Tallahassee. Florida.
Sheppard, D., & Renna, R. (2010). Bridge scour manual. 605 Suwannee Street. Tallahassee, FL, 32399-30450.
Wardhana, K., & Hadipriono, F. C. (2003). Analysis of recent bridge failures in the United States. Journal of performance of constructed facilities, 17(3), 144-150. https://doi.org/10.1061/(ASCE)0887-3828(2003)17:3(144)
Yorozuya, A., & Ettema, R. (2015). Three abutment scour conditions at bridge waterways. Journal of Hydraulic Engineering, 141(12), 04015028. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001053
Zahiri, J., & Kashefipour, S. M. (2018). Predicting maximum scour depth around bridge abutment using M5 model. Irrigation Sciences and Engineering, 41(1), 1-16. https://doi.org/10.22055/jise.2018.13543