بررسی تأثیر تنش شوری بر پارامترهای جوانه زنی و رشدی بذر سان همپ (Crotalaria juncea)
محورهای موضوعی : تنش های محیطیفاطمه احمدنیا 1 * , علی عبادی 2
1 - دانشجوی دکتری، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی، اردبیل ، ایران
2 - استاد، فیزیولوژی گیاهان زراعی، گروه آموزشی مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل،
کلید واژه: بذر, پتانسیل اسمزی, تنش, سان همپ, شاخص های جوانه زنی,
چکیده مقاله :
جوانه زنی بذر یکی از مراحل مهم چرخه زیستی گیاهان است که می تواند تحت تأثیر تنش های محیطی قرار گیرد. تنش شوری به عنوان یکی از مهمترین چالش های سیستم های کشاورزی شناخته می شود که در نتیجه فعالیت های انسانی و تغییرات اقلیمی پیوسته بر تولیدات کشاورزی تأثیرگذار است. در سال 1402 پژوهشی در آزمایشگاه تکنولوژی بذر گروه آموزشی مهندسی تولید و ژنتیک گیاهی دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی به منظور بررسی تأثیر تنش شوری بر جوانه زنی و مؤلفه های رشدی سان همپ (Crotalaria juncea) اجرا شد. این پژوهش در قالب طرح کامل تصادفی (RCD) با سه تکرار اجرا شد. تنش شوری با استفاده از کلرید سدیم (NaCl) برای تهیه شش پتانسیل اسمزی صفر، 2/0-، 4/0-، 8/0-، 2/1- و 2- مگاپاسگال، توسط معادله وانت هوف محاسبه و اجرا شد. نتایج نشان داد که با تشدید تنش شوری، درصد جوانهزنی، سرعت جوانهزنی، میانگین زمان جوانهزنی، میانگین سرعت جوانهزنی، ضریب سرعت جوانهزنی، شاخص جوانهزنی، طول ریشه چه، طول ساقهچه و وزن تر گیاهچه کاهش معنیداری داشت. قابل ذکر است که در پتانسیل اسمزی 2- و 2/1- مگاپاسکال، درصد جوانه زنی بذر به ترتیب به 100 و 43 درصد کاهش یافت. این نتایج نشان داد که بذر سان همپ میتوانند تنش شوری را تا پتانسیل اسمزی 4/0- مگاپاسکال تحمل کنند. با این حال، با افزایش پتانسیل اسمزی ناشی از شوری فراتر از این آستانه (4/0- مگاپاسگال)، توانایی آن ها برای جوانه زدن و بقاء کاهش یافت.
Seed germination is a critical stage in the life cycle of plants and can be influenced by various environmental stresses. Salinity stress is known as one of the most important challenges of agricultural systems, which as a result of human activities and climate changes continuously affects agricultural production. In 2023, a research study was conducted at the Seed Technology Laboratory of the Department of Production Engineering and Plant Genetics, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, to investigate the impact of salinity stress on the germination and growth parameters of sunn hemp seeds (Crotalaria juncea). The study employed a randomized complete design (RCD) with three replications. Salinity stress was induced using sodium chloride (NaCl) to prepare six osmotic potentials, zero, -0.2, -0.4, -0.8, -1.2, and -2 MPa, as determined by the Van't Hoff equation. The findings revealed significant reductions in germination percentage, germination rate, mean time of germination, mean rate of germination, coefficient of velocity of germination, germination index, radicle length, plumule length, and seedling fresh weight as the salinity osmotic potentials became more negative. Notably, at osmotic potentials of -2 and -1.2 MPa, seed germination percentages dropped to 100% and 43% respectively. These results demonstrate that sunn hemp seeds can tolerate salinity stress up to an osmotic potential of -0.4 MPa. However, as the salinity osmotic potential increases beyond this threshold (-0.4 MPa), their ability to germinate and survive diminishes.
Acquaah, G. 2007. Principles of plant genetics and breeding. 2nd Edn. Oxford. Blackwell. p 740.
Almansouri, M., Kinet, J.M. and Lutts, S. 2001. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil. 231 (2001): 243- 254.
Anuradha, C. 2014. Effect of salt stress on seedling growth of sunflower (Helianthus annuus L.). International Journal of Scientific Research. 3(9): 15-22.
Arif, Y., Singh, P., Siddiqui, H., Bajguz, A. and Hayat, S. 2020. Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiology and Biochemistry. 156(2020): 64-77. DOI: 10.1016/j.plaphy.2020.08.042
Arora, N.K. 2019. Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability. 2(2019): 95-96. DOI: 10.1007/s42398-019-00078-w
Azevedo Neto, A.D., Prisco, J.T., Enéas filho, J., Lacerda, C.F., Silva, J.V., Costa, P.H.A., Gomes filho, E. 2004. Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Brazilian Journal of Plant Physiology Pelotas. 16(1): 31-38.
Babakhani, M., and Kazemi, N. 2022. Effects of salinity stress on germination properties of Ocimum basilicum seed. Journal of Seed Research. 11(4): 23-29.
Balkcom, K., Massey, J.M., Mosjidis, J.A., Price, A.J. and Enloe, S.F. 2011. Planting date and seeding rate eff ects on sunn hemp biomass and nitrogen production for a winter cover crop. International Journal Agronomy. DOI:10.1155/2011/237510.
Borna, F., and Heidari, M. 2022. Evaluation of seed germination and seedling growth indices of Drimia maritima L. under salinity and temperature stress. Journal of Seed Research. 12 (1): 11-23. DOI: 10.30495/jsr.2022.1962102.1236
Cho, A.H., Chase, C.A. and Treadwell, D.D. 2015. Apical dominance and planting density effects on weed suppression by Sunn Hemp (Crotalaria juncea L.). Hortscience. 50(2):263-267.
EL Sabagh, A., Islam, MS., Skalicky, M., Ali Raza, M., Singh, K., Anwar Hossain, M., Hossain, A., Mahboob, W., Iqbal, MA., Ratnasekera, D., Singhal, RK., Ahmed, S., Kumari, A., Wasaya, A., Sytar, O., Brestic, M., ÇIG, F., Erman, M., Habib Ur Rahman, M., Ullah, N. and Arshad, A. 2021. Salinity Stress in Wheat (Triticum aestivum L.) in the changing climate: adaptation and management strategies. Frontiers in Agronomy. 3(661932): 1-20. DOI: 10.3389/fagro.2021.661932
Ellis, K.E., and Barbercheck, M.E. 2015. Management of overwintering cover crops influences floral resources and visitation by native bees. Environmental Entomology. 44:999-1010.
Ellis, R. H. 1992. Seed and seedling vigor in relation to crop growth and yield. Plant Growth Regulation. 11(1992): 249-255.
FAO. 2009. High level expert forum-how to feed the world in 2050. economic and social development. Rome: food and agricultural organization of the United Nations.
Gupta, B., and Huang, B. 2014. Mechanism of salinity tolerance in plants Physiological, biochemical, and molecular characterization. International Journal of Genomics. 2014(701596): 1-18. DOI: 10.1155/2014/701596
Hasanuzzaman, M., Alam, M., Rahman, A., Hasanuzzaman, M., Nahar, K. and Fujita, M. 2014. Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMed Research International. 2014(757219): 1-18. DOI: 10.1155/2014/757219
Hernandez, J. A., Ferrer, M. A., Jimenez, A., Barcelo, A. R. and Sevilla, F. 2001. Antioxidant systems and O2−/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 127(3): 817–831. DOI:10.1104/pp.010188
Isayenkov, S.V. 2012. Physiological and molecular aspects of salt stress in plants. Cytol. Genet. 46(2012): 302-318. DOI: 10.3103/S0095452712050040
Isayenkov, S.V. and Maathuis, F.J.M. 2019. Plant salinity stress: many unanswered questions remain. Frontiers Plant Science. 10(80):1-11. DOI: 10.3389/fpls.2019.00080
JahanBakhsh, S., Parmoon, Gh. Azad, H. and Ghatei, A. 2018. Modeling hydro time and threshold tolerance to salinity and drought on germination different species Basil (Ocimum basilicum). Iranian Journal of seed Science and Technology. 7(2): 119-142. DOI: 10.22034/ijsst.2019.109228.1056
Johnson, R. and Puthur, J.T. 2021. Seed priming as a cost-effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry. 162(2021): 247-257. https://doi.org/10.1016/j.plaphy.2021.02.034
Kalaji, H., and Nalborczyk, E. 1991. Gas exchange of barley seedlings growing under salinity stress. Photosynthetica. 25 (2): 197-202.
Kalaji, H.M., Bosa, K., Ko´scielniak, J. and Zuk-Gołaszewska, K. 2011. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany. 73(2011): 64-72. DOI: 10.1016/j.envexpbot.2010.10.009
Kamireddy, S.R., Li, J., Abbina, S., Berti, M., Tucker, M., and Ji, Y. 2013. Converting forage sorghum and sunn hemp into biofuels through dilute acid pretreatment. Industrial Crop Products. 49 (2013): 598-609. https://doi.org/10.1016/j.indcrop.2013.06.018.
Kerbauy, G.B. 2004. Fisiologia vegetal. Rio de Janeiro: Guanabara Koogan. p 452.
Lima, K.L., Cavalcante, L.F., and Feitosa filho, J.C. 2001. Efeitos de fontes e níveis de salinidade da água de irrigação sobre a germinação e o crescimento da pinheira. Engenharia Agrícola Jaboticabal. 21(2): 135-144.
Maguire, J.D. 1962. Speed of germination, aid in selection and evaluation for seedling emergence and vigour. Crop Science. 2(2):176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x
Makkizadeh Tafti, M., Farhoudi, R. and Rastifar, M. 2012. Effect of osmopriming on seed germination of Lemon balm (Melissa officinalis L.) under salinity stresses. Iranian Journal of Medicinal and Aromatic Plants. 27(4): 573-586.
Meagher, R.L., Rodney, J.R., Nagoshi, N. and Brown, J.T. 2017. Flowering of the cover crop sunn hemp, Crotalaria juncea L. HortScience. 52(7): 986-990. DOI: 10.21273/HORTSCI11981-17
Miransari, M., and Smith, D.L. 2014. Plant hormones and seed germination. Environmental and Experimental Botany. 99(2014): 110-121 https://doi.org/10.1016/j.envexpbot.2013.11.005
Mosjidis, J.A., and G. Wehtje, 2011. Weed control in sunn hemp (Crotalaria juncea L.) and its ability to suppress weed growth. Crop Protection. 30:70-73. DOI: 10.1016/j.cropro.2010.08.021
Nunes, A.D.S., Lourenção, A.L.F. Pezarico, C.R. Scalon, S.P.Q. and Gonçalves, M.C. 2009. Fontes e níveis de salinidade na germinação de sementes de Crotalaria juncea L. Ciência e Agrotecnologia, 33(3): 753-757.
Parenti, A., Cappelli, G., Zegada-Lizarazu, C.M. W., Sastre, M. Christou, A., Monti, A. and Ginaldi, F. 2021. SunnGro: A new crop model for the simulation of sunn hemp (Crotalaria juncea L.) grown under alternative management practices. Biomass and Bioenergy. 146(105975) 1-16. https://doi.org/10.1016/j.biombioe.2021.105975
Perry, D.A. 1991. Methodology and application of vigor tests. International Seed Testing Association. Zurich. Switzerland. p 275.
Riasat, M., Nasirzadeh, A. and Heidari, M. 2006. Determination of the best methods of seed germination and growth index in some species of Trigonella in Fars province. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research. 13(3): 227-338.
Riedinger, V., Renner, M., Rundleof, M., Steffan-Dewenter, I. and Holzschuh, A. 2014. Early mass-flowering crops mitigate pollinator dilution in late-flowering crops. Landscape Ecology. 29:425-435.
Samuel, P.N.K.J. and Sornakumar, R.S.A. 2020. Antioxidant, antimicrobial, haemolytic, germination and growth promoting properties of Crotalaria juncea L. Plant Science Today. 7(2):201-205. https://doi.org/10.14719/pst.2020.7.2.653
Scott, S.J., Jones, R.A. and Williams, W.A. 1984. Review of data analysis methods for seed germination. Crop Science. 24(6): 1192-1199. https://doi.org/10.2135/cropsci1984.0011183X002400060043x
Seleiman, M.F., Semida, W.M., Rady, M.M., Mohamed, G.F., Hemida, K.A., Alhammad, B., Hassan, M.M. and Shami, A. 2020. Sequential application of antioxidants rectifies ion imbalance and strengthens antioxidant systems in salt-stressed cucumber. Plants. 9 (12):1783, 1-15. https://doi.org/10.3390/plants9121783
Tekrony, D.M. and Egli, D.B. 1991. Relationship of seed vigor to crop yield: a review. Crop Science. 31(3):816-822.
Tsugane, K., Kobayashi, K., Niwa, Y., Ohba, Y., Wada, K., and Kobayashi, H. 1999. A recessive Arabidopsis mutant that grows photo autotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell. 11(7): 1195–1206. DOI: 10.2307/3870742
Uçarli, C. 2020. Effects of salinity on seed germination and early seedling stage. In: Abiotic stress in plants. (Ed. Fahad, S., Saud, S., Chen, Y., Wu, C. and Wang, D.). Pp 1-20.
Wang, K.H., Sipes, B.S. and Schmitt, D.P. 2002. Crotalaria as a cover crop for nematode management: a review. Nematropica. 32: 35-57.
Zhang, H., Irving, L.J., Tian, Y., and Zhou, D. 2012. Influence of salinity and temperature on seed germination rate and the hydrotime model parameters for the halophyte, Chloris virgata, and the glycophyte, Digitaria sanguinalis. South African Journal of Botany. 78(2012): 203-210. https://doi.org/10.1016/j.sajb.2011.08.008