A wide range of communication wavelengths; the tunable zero-dispersion by dual-concentric-core photonic crystal fibers
Subject Areas : Renewable energy and transportation
1 -
Keywords: photonic crystal fibers, dispersion, dual-concentric,
Abstract :
In the present paper, we propose a new Photonic Crystal Fiber (PCF) design and analyze the contribution of geometrical parameters to the photonic crystal fibers dispersion and effective refractive index. The proposed design is validated using the 3-D finite-difference time-domain technique. According to the results of this paper, by increasing the radius of the core, the dispersion coefficient sign changes from positive to negative. For a radius of 0.5 µm at wavelengths above 1600 nm, the dispersion is close to zero. For a core refractive index greater than 1.47, the dispersion will be zero. By increasing the core refractive index, the zero-dispersion wavelength is increased.
1]. Habib A, Anower S, Hasan R (2017) Ultrahigh birefringence and extremely low loss slotted-core microstructure fiber in terahertz regime. Curr Opt Photon 1:567–572.
[2]. Faruk MM, Khan NT, Biswas SK (2019) Highly nonlinear bored core hexagonal photonic crystal fiber (BC-HPCF) with ultra-high negative dispersion for fiber optic transmission system. Front Opto electron.
[3]. Travers JC, Chang W, Nold J, Joly NY (2011) PJ Russell (2011)‘‘Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited]’’. J Opt Soc Am B 28:A11–A26
[4]. Robin C, Dajani I, Zeringue C, Ward B, Lanari A (2012) Gain-tailored SBS suppressing photonic crystal fibers for high power applications. Proc SPIE Fiber Syst Appl 1:82371D.
[5]. Habib MA (2020) A Refractive index based micro-structured sensorfor blood components detection in terahertz regime. SensorLetters 18(1):74–82
[6]. Lobo Ribeiro AB, Silva SFO, Fraza ̃o O, Santos JL (2019) Bi-coreoptical fiber for sensing of temperature, strain and torsion.Measure Sci Technol 30:035104
[7]. Vaiano P, Carotenuto B, Pisco M, Ricciardi A, Quero G, Consales M,Crescitelli A, Esposito E, Cusano A (2016) Lab on fibertechnology for biological sensing applications. Laser PhotonicsRev 10(6):922–961.
[8]. Knabe K, Shun Wu, Lim J, Tillman KA, Light PS, Couny F, WheelerN, Thapa R, Jones AM, Nicholson JW, Washburn BR, BenabidF, Corwin KL (2009) 10 kHz accuracy of an optical frequencyreference based on12C2H2-filled large-core kagome photonic crystal fibers. Opt Express 17:16017–16026
[9]. Wadsworth WJ, Ortigosa-Blanch A, Knight JC, Birks TA, Martin Man T-P, Phillip St J (2002) Super continuum generation in photonic crystal fibers and optical fiber tapers: a novel light source. J Opt Soc Am B 19:2148–2155
[10]. Humbert G, Knight JC, Bouwmans G, Russell PJ, Williams DP,Roberts PJ, Mangan BJ (2004) Hollow core photonic crystal fibers for beam delivery. Opt Express 12:1477–1484
[11]. Islam MR, Kabir MF, Talha KMA, Islam MS (2019) A novel hollowcore terahertz refractometric sensor. Sens Biosens Res 5:100295.
[12]. Liu C, Weiquan Su, Liu Q, Xili Lu, Wang F, Sun T, Chu PK (2018) Symmetrical dual D-shape photonic crystal fibers for surfaceplasmon resonance sensing. Opt Express 26:9039–9049.
[13]. B. Zsigri, J. Lægsgaard, and A. Bjarklev, “A novel photonic crystal fibre design for dispersion compensation,” J. Opt. A Pure Appl. Opt., vol. 6, no. 7, pp. 717–720, Jul. 2004.
[14]. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: Theoretical model and design criteria for nearly ideal pulse recompression,” J. Light. Technol., vol. 15, no. 8, pp. 1303–1313, 1997.
[15]. H. Bülow, F. Buchali, and A. Klekamp, “Electronic dispersion compensation,” J. Light. Technol., vol. 26, no. 1, pp. 158–167, 2008.
[16]. S. Watanabe, T. Naito, and T. Chikama, “Compensation of chromatic dispersion in a single-mode fiber by\noptical phase conjugation,” IEEE Photonics Technol. Lett., vol. 5, no. 1, pp. 92–95, Jan. 1993.
[17]. A. Bala, K. R. Chowdhury, M. B. Mia, and M. Faisal, “Highly birefringent, highly negative dispersion compensating photonic crystal fiber,” Appl. Opt., vol. 56, no. 25, p. 7256, Sep. 2017.
[18]. K. Thyagarajan, R.K. Varshney, P. Palai, A.K. Ghatak, and I.C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photonics Technol. Lett. 8, 1510-1512 (1996).
[19]. J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, “−1800 ps/(nm·km) chromatic dispersion of 1.55 μm in dual concentric core fibre,” Electron. Lett. 36, 1689-1691 (2000).
[20]. HABIB, M. S., AHMAD, R., HABIB, M. S. et al. Residual dispersion compensation over the S +C +L +U wavelength bands using highly birefringent octagonal photonic crystal fiber. Applied Optics, 2014, vol. 53, no. 14, p. 3057–3062.
[21]. LI, X., LIU, P., XU, Z., et al. Design of a pentagonal photonic crystal fiber with high birefringence and large flattened negative dispersion. Applied Optics, 2015, vol. 54, no. 24, p. 7350–7357.
[22]. KAIJAGE, S. F., NAMIHIRA, Y., HAI, N. H., et al. Broadband dispersion compensating octagonal photonic crystal fiber for optical communication applications. Japanese Journal of Applied Physics, 2009, vol. 48, no. 052401, 8 p.
[23]. MAHMUD, R. R., KHAN, M. A. G., RAZZAK, S. M. A. Design and comparison of SF57 over SiO2 on same structured PCF for residual dispersion compensation. Photonics Journal, 2016, vol. 8, no. 6, 10 p. DOI: 10.1109/JPHOT.2016.2628802.
[24]. Kumar, P., Kumar, V. and Roy, J.S., 2019. Design of quad-core photonic crystal fibers with flattened zero dispersion. AEU-International Journal of Electronics and Communications, 98, pp.265-272.
[25]. Huang, Y., Yang, H., Zhao, S., Mao, Y., & Chen, S. (2021). Design of photonic crystal fibers with flat dispersion and three zero dispersion wavelengths for coherent supercontinuum generation in both normal and anomalous regions. Results in Physics, 23, 104033.