بررسی خواص زیستسازگاری پوشش کربنی الماسگون (DLC) ایجادشده روی آلیاژ Ti-6Al-4V به روش الکترونهشت ولتاژ پایین
محورهای موضوعی : بیوموادپوریا حبیب زاده اصل ممقانی 1 * , علیرضا ذاکری 2
1 - دانش¬آموخته کارشناسی ارشد، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران.
2 - دانشیار، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران.
کلید واژه: آلیاژ Ti6Al4V کربن الماسگون الکترونهشت ولتاژ پایین خواص زیستسازگاری,
چکیده مقاله :
در تحقیق حاضر لایهنشانی کربن الماسگون به کمک روش الکترونهشت1 در پتانسیل اعمالی 16 ولت جهت اصلاح سطح آلیاژ Ti6Al4V و خواص ساختاری و زیستسازگاری آن مورد ارزیابی قرار گرفته است. ماهیت و مشخصات ساختاری پوشش بهدستآمده در بهتـرین شرایط عملیـاتی بـه کمک طیفسنجی رامـان شنـاسایی و معلوم شد کـه نسبت ID/IG بـرابـر با 92/1 است. میـکروسکوپ FE-SEM برای بررسیهای ریزساختاری مقطع پوشش و مورفولوژی سطح استفاده و ضخامتی بهاندازه µm 17/0± 74/1 شناسایی شد. همچنین خواص زیستسازگاری پوشش ایجادشده از طریق آزمونهای آنتیباکتریال، ارزیابی زندهمانی سلولی (MTT)، خوردگی در محلول شبیهسازی شده بدن و زیست تخریبپذیری بررسی شد. نتایج بهدستآمده از ارزیابی خواص زیستسازگاری حاکی از نرخ زندهمانی 03/0± 12/91 درصد با زاویه تماسی 6/2± 7/70 درجهای میباشد. همچنین، با توجه به انجام آزمونهای پلاریزاسیون پتانسیودینامیک و طیفسنجی امپدانس پوشش الماسگون ایجاد شده میتواند بازدارندگی 40/24 درصدی در مقابل محیط خورنده شبیهسازی شده بدن برای زیرلایه تیتانیمی ایجاد کند که پوششی آیندهدار برای کاربردهای پزشکی را نوید میدهد.
In the present research, the effect of diamond-like carbon coating produced by the electrodeposition method at an applied potential of 16 volts was investigated to modify surface properties of Ti6Al4V alloy. The nature and structural characteristics of the coating obtained in the best operating conditions was examined with the help of Raman spectroscopy, with an ID/IG ratio of 1.92. FE-SEM analysis was used to investigate the microstructure of the coating cross-section and the surface morphology, from which a thickness of 1.74±0.17 µm was measured. Besides, the biocompatibility properties of the coating were investigated through antibacterial tests, cell viability assay (MTT), corrosion in simulated body fluid and biodegradability. The results obtained from the evaluation of biocompatibility properties indicate that the coating is non-toxic and the survival rate is 91.12±0.03% with a contact angle of 70.7±2.6 degrees. Also, according to the potentiodynamic polarization and impedance spectroscopy tests, the deposited coating can provide 24.40% resistance against the simulated corrosive environment of the body for the titanium alloy, which represents a promising coating for bio-medical applications.
[1] P. B. Milan et al., "Copper-enriched diamond-like carbon coatings promote regeneration at the bone–implant interface," Heliyon, vol. 6, no. 4, 2020.
[2] I. V. Branzoi, M. Iordoc, F. Branzoi, G. Rimbu, and V. Marinescu, "Synthesis and characterization of high‐voltage electrodeposited diamond‐like carbon protective coating on TiAlV biomedical substrates," Surface and Interface Analysis, vol. 44, no. 8, pp. 1193-1197, 2012.
[3] ف. غروی و ع. افشار، "ارزیابی رفتار خوردگی تیتانیوم خالص تجارتی در محیطهای شبیهسازی شده بدن با استفاده از تکنیک الکتروشیمیایی امپدانس (EIS)"، فرآیندهای نوین در مهندسی مواد، دوره 2، شماره 2، ص. 43-50، 1387.
[4] T. Das, D. Ghosh, T. Bhattacharyya & T. Maiti, "Biocompatibility of diamond-like nanocompos؛ite thin films," Journal of Materials Science: Materials in Medicine, vol. 18, pp. 493-500, 2007.
[5] M. Mozafari, E. Salahinejad, S. Sharifi-Asl, D. Macdonald, D. Vashaee & L. Tayebi, "Innovative surface modification of orthopaedic implants with positive effects on wettability and in vitro anti-corrosion performance," Surface Engineering, vol. 30, no. 9, pp. 688-692, 2014.
[6] M.-Y. Tsai & et al., "Surface properties of copper-incorporated diamond-like carbon films deposited by hybrid magnetron sputtering," Ceramics International, vol. 39, no. 7, pp. 8335-8340, 2013.
[7] R. Bayón, A. Igartua, J. González & U. R. De Gopegui, "Influence of the carbon content on the corrosion and tribocorrosion performance of Ti-DLC coatings for biomedical alloys," Tribology International, vol. 88, pp. 115-125, 2015.
[8] Y. Leng & et al., "Structure and properties of biomedical TiO2 films synthesized by dual plasma deposition," Surface and Coatings Technology, vol. 156, no. 1-3, pp. 295-300, 2002.
[9] J. Chen & et al., "Blood compatibility and sp3/sp2 contents of diamond-like carbon (DLC) synthesized by plasma immersion ion implantation-deposition," Surface and Coatings Technology, vol. 156, no. 1-3, pp. 289-294, 2002.
[10] A. Grill, "Diamond-like carbon: state of the art," Diamond and Related Materials, vol. 8, no. 2-5, pp. 428-434, 1999.
[11] H. Fukui, J. Okida, N. Omori, H. Moriguchi & K. Tsuda, "Cutting performance of DLC coated tools in dry machining aluminum alloys," Surface and Coatings Technology, vol. 187, no. 1, pp. 70-76, 2004.
[12] K. Bewilogua & D. Hofmann, "History of diamond-like carbon films—From first experiments to worldwide applications," Surface and Coatings Technology, vol. 242, pp. 214-225, 2014.
[13] D. K. Rajak, A. Kumar, A. Behera & P. L. Menezes, "Diamond-like carbon (DLC) coatings: classification, properties, and applications," Applied Sciences, vol. 11, no. 10, p. 4445, 2021.
[14] ا. اسحاقی، ف. مجیری، ا. کرمی، و ا. ابراهیمزاده، "اثر اعمال نانو فیلم کربن شبه الماسی بر بازدهی سلولهای خورشیدی سیلیکونی"، فرآیندهای نوین در مهندسی مواد، دوره 9، شماره 2، ص 9-15، 1394.
[15] G. Dearnaley & J. H. Arps, "Biomedical applications of diamond-like carbon (DLC) coatings: A review," Surface and Coatings Technology, vol. 200, no. 7, pp. 2518-2524, 2005.
[16] K. Sreejith, J. Nuwad & C. Pillai, "Low voltage electrodeposition of diamond like carbon (DLC)," Applied Surface Science, vol. 252, no. 2, pp. 296-302, 2005.
[17] Y. Namba, "Attempt to grow diamond phase carbon films from an organic solution," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 10, no. 5, pp. 3368-3370, 1992.
[18] Y.-g. Zhang & et al., "Electrodeposition and microstructure of Ni and B co-doped diamond-like carbon (Ni/B-DLC) films," Surface and Coatings Technology, vol. 405, p. 126713, 2021.
[19] N. Basman, R. Uzun, E. Gocer, E. Bacaksiz & U. Kolemen, "Electrodeposition of Si–DLC nanocomposite film and its electronic application," Microsystem Technologies, vol. 24, pp. 2287-2294, 2018.
[20] R. A. Ismail, A. M. Mousa & M. A. Hassan, "Critical methanol to ethanol volume ratio effect on the electrodeposition of DLC films," Optik, vol. 179, pp. 29-36, 2019.
[21] Q. B. Zhu, B. K. Xiang, Y. Yang, Z. S. Meng, S. J. Wang & D. W. Zuo, "Research on Synthesis of Diamond-like Carbon (DLC) Films with Assistance of Copper Ions by Electrodeposition Technique at Low Voltage," Advanced Materials Research, vol. 1053, pp. 351-356, 2014.
[22] R. Roy, B. Deb, B. Bhattacharjee & A. Pal, "Synthesis of diamond-like carbon film by novel electrodeposition route," Thin Solid Films, vol. 422, no. 1-2, pp. 92-97, 2002.
[23] H. Hassannejad, F. Bogani, M. Boniardi, A. Casaroli, C. Mele & B. Bozzini, "Electrodeposition of DLC films on carbon steel from acetic acid solutions," Transactions of the IMF, vol. 92, no. 4, pp. 183-188, 2014.
[24] H. Wang & et al., "Deposition of diamond‐like carbon films by electrolysis of methanol solution," Applied Physics Letters, vol. 69, no. 8, pp. 1074-1076, 1996.
[25] W. He, R. Yu, H. Wang & H. Yan, "Electrodeposition mechanism of hydrogen-free diamond-like carbon films from organic electrolytes," Carbon, vol. 43, no. 9, pp. 2000-2006, 2005.
[26] پ. حبیبزاده اصل ممقانی، "بررسی خواص تریبولوژی و زیستسازگاری پوشش کربنی الماسگون (DLC) ایجاد شده روی تیتانیم به روش الکترولیز ولتاژ پائین"، پایاننامه کارشناسی ارشد، دانشگاه علم و صنعت ایران، 1402.
[27] T. Falcade & et al., "Electrodeposition of diamond-like carbon films on titanium alloy using organic liquids: Corrosion and wear resistance," Applied Surface Science, vol. 263, pp. 18-24, 2012.
[28] S. Ramasamy & et al., "Magnetic hydroxyapatite nanomaterial–cyclodextrin tethered polymer hybrids as anticancer drug carriers," Materials Advances, vol. 2, no. 10, pp. 3315-3327, 2021.