تاثیر بازدارنده ای بر پایه ایمیدازولین بر خوردگی فولاد API 5L Gr.B در آب دریای ساختگی
محورهای موضوعی : عملیات حرارتیآرش فتاح الحسینی 1 * , صادق مومنی 2
1 - استادیار، گروه مهندسی مواد، دانشکده مهندسی، دانشگاه بوعلی سینا
2 - دانش آموخته کارشناسی ارشد، گروه مهندسی مواد، دانشکده مهندسی، دانشگاه بوعلی سینا
کلید واژه: بازدارنده, مقاومت پلاریزاسیون, رفتار خوردگی, فولاد کربنی API 5L Gr.B,
چکیده مقاله :
در این پژوهش، رفتار خوردگی فولاد کربنی API 5L Gr.B و میزان تزریق بازدارنده ای بر پایه ایمیدازولین در آب دریای ساختگی بررسی شد. برای این منظور پس از غوطه وری نمونه ها در پتانسیل مدار باز به مدت زمان 30 دقیقه، آزمون های پلاریزاسیون تافل و طیف سنجی امپدانس الکتروشیمیایی انجام شدند. منحنی های پلاریزاسیون تافل نشان داد که کم ترین مقدار چگالی جریان خوردگی با افزودن مقدار ppm 40 از بازدارنده به دست می آید. نتایج آزمون های طیف سنجی امپدانس الکتروشیمیایی آشکار ساخت که بیش ترین مقدار مقاومت پلاریزاسیون با افزودن مقدار ppm 40 از بازدارنده به دست می آید که تایید کننده نتایج آزمون های پلاریزاسیون تافل است. هم چنین نتایج آزمون های طیف سنجی امپدانس الکتروشیمیایی آشکار ساخت که بهترین مدار معادل دارای دو ثابت زمانی است.
[1] J. Zhang, J. Liu, W. Yu, Y. Yan, L. You & L. Liu, “Molecular modeling of the inhibition mechanism of 1-(2-aminoethyl)-2-alkyl-imidazoline”, Corrosion Science, Vol. 52, pp. 2059–2065, 2010.
[2] D.M. Ortega-Toledo, J.G. Gonzalez-Rodriguez, M. Casales, L. Martinez & A. Martinez-Villafañe, “CO2 corrosion inhibition of X-120 pipeline steel by a modified imidazoline under flow conditions”, Corrosion Science, Vol. 53, pp. 3780–3787, 2011.
[3] J. Liu, W. Yu, J. Zhang, S. Hu, L. You & G. Qiao, “Molecular modeling study on inhibition performance of imidazolines for mild steel in CO2 corrosion”, Applied Surface Science, Vol. 256, pp. 4729–4733, 2010.
[4] G. Trabanelli, V. Carassiti, “Mechanism and Phenomenology of Organic Inhibitors, Advanced Corrosion Science and Technology, Ed. M.G. Fontana, R.W. Staehle, Plenum Press, New York, NY, Vol. 1, p. 170, 1970.
[5] P.C. Okafor & Y. Zheng, “Synergistic inhibition behaviour of methylbenzyl quaternary imidazoline derivative and iodide ions on mild steel in H2SO4 solutions”, Corrosion Science, Vol. 51, pp. 850–859, 2009.
[6] F. Mansfeld, Corrosion Mechanisms, p. 119, Marcel. Dekker Inc, 1987.
[7] D. Wang, S. Li, Y. Ying, M. Wang, H. Xiao & Z. Chen, “Theoretical and experimental studies of structure and inhibition efficiency of imidazoline derivatives”, Corrosion Science, Vol. 41, pp. 1911–1919, 1999.
[8] P.C. Okafor, X. Liu & Y.G. Zheng, “Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution, Corrosion Science, Vol. 51, pp. 761–768, 2009.
[9] B. Wang, M. Du, J. Zhang & C.J. Gao, “Electrochemical and surface analysis studies on corrosion inhibition of Q235 steel by imidazoline derivative against CO2 corrosion”, Corrosion Science, Vol. 53, pp. 353–361, 2011.
[10] X. Jiang, Y.G. Zheng & W. Ke, “Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO2 corrosion of N80 steel in 3% NaCl solution”, Corrosion Science, Vol. 47, pp. 2636–2658, 2005.
[11] L.J. Korb, D.L. Olsen, “Metals Handbook”, Ninth Edition, Corrosion in Petroleum Production Operation, Vol. 13, 1232–1244, 1987.
[12] Y. Chen, T. Hong, M. Gopal & W.P. Jepson, “EIS studies of a corrosion inhibitor behavior under multiphase flow conditions”, Corrosion Science, Vol. 42, pp. 979–990, 2000.
[13] G. Zhang, C. Chen, M. Lu, C. Chai & Y. Wu, “Evaluation of inhibition efficiency of an imidazoline derivative in CO2-containing aqueous solution”, Materials Chemistry and Physics, Vol. 105, pp. 331–340, 2007.
[14] M. Heydari & M. Javidi, “Corrosion inhibition and adsorption behaviour of an amido-imidazoline derivative on API 5L X52 steel in CO2-saturated solution and synergistic effect of iodide ions”, Corrosion Science, Vol. 61, pp. 148–155, 2012.
[15] J. Zhang, G. Qiao, S. Hu, Y. Yan, Z. Ren & L. Yu, “Theoretical evaluation of corrosion inhibition performance of imidazoline compounds with different hydrophilic groups”, Corrosion Science, Vol. 53, pp. 147–152, 2011.
[16] S. Xia, M. Qiu, L. Yu, F. Liu & H. Zhao, “Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance”, Corrosion Science, Vol. 50, pp. 2021–2029, 2008.
[17] L.M. Rodrıguez-Valdez, W. Villamisar, M. Casales, J.G. Gonzalez-Rodriguez, A. Martınez-Villafane, L. Martinez & D. Glossman-Mitnik, “Computational simulations of the molecular structure and corrosion properties of amidoethyl, aminoethyl and hydroxyethyl imidazolines inhibitors”, Corrosion Science, Vol. 48, pp. 4053–4064, 2006.
[18] J. Zhao & G. Chen, “The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution”, Electrochimica Acta, Vol. 69, pp. 247– 255, 2012.
[19] X. Liu, P.C. Okafor & Y.G. Zheng, “The inhibition of CO2 corrosion of N80 mild steel in single liquid phase and liquid/particle two-phase flow by aminoethyl imidazoline derivatives”, Corrosion Science, Vol. 51, pp. 744–751, 2009.
[20] J. Cruz, R. Martınez, J. Genesca & E. Garcıa-Ochoa, “Experimental and theoretical study of 1-(2-ethylamino)-2-methylimidazoline as an inhibitor of carbon steel corrosion in acid media”, Journal of Electroanalytical Chemistry, Vol. 566, pp. 111–121, 2004.
[21] T. Murakava & N. Hackerman, “The Double Layer Capacity at the Interface Between Iron and Acid Solutions with and without Organic Materials”, Corrosion Science, Vol. 4, pp. 387– 396, 1964.
[22] S. H. Yoo, Y. W. Kim, K. Chung, S. Y. Baik & J. S. Kim, “Synthesis and corrosion inhibition behavior of imidazoline derivatives based on vegetable oil”, Corrosion Science, Vol. 59, pp. 42–54, 2012.
[23] D.A. Lopez, S.N. Simison & S.R. de Sanchez, “Inhibitors performance in CO2 corrosion: EIS studies on the interaction between their molecular structure and steel microstructure”, Corrosion Science, Vol. 47, pp. 735–755, 2005.
[24] S. Hu, A. Guo, Y. Geng, X. Jia, S. Sun & J. Zhang, “Synergistic effect of 2-oleyl-1-oleylamidoethyl imidazoline ammonium methylsulfate and halide ions on the inhibition of mild steel in HCl”, Materials Chemistry and Physics, Vol. 134, pp. 54–60, 2012.
[25] T. Hong & W.P. Jepson, “Corrosion inhibitor studies in large flow loop at high temperature and high pressure”, Corrosion Science, Vol. 43, pp. 1839–1849, 2001.
[26] T. Hong, Y.H. Sun & W.P. Jepson, “Study on corrosion inhibitor in large pipelines under multiphase flow using EIS”, Corrosion Science, Vol. 44, pp. 101–112, 2002.
[27] G.W. Walter, “The application of impedance spectroscopy to study the uptake of sodium chloride solution in painted metals”, Corrosion Science, Vol. 32, pp. 1041–1058, 1991.
[28] M.S. Morad, “An electrochemical study on the inhibiting action of some organic phosphonium compounds on the corrosion of mild steel in aerated acid solutions”, Corrosion Science, Vol. 42, pp. 1307–1326, 2000.