سنتز پوشش کامپوزیتی خودترمیم شونده برای بهبود مقاومت به خوردگی آلیاژ آلومینیوم 2024
محورهای موضوعی : خوردگی و حفاظت موادامیرحسین شیخعلی 1 , محمد امین کاشی ساز 2
1 - دانشگاه صنعتی مالک اشتر، پژوهشکده مهندسی مواد، تهران
2 - کارشناسی ارشد، مهندسی پلیمر، دانشگاه آزاد اسلامی واحد علوم تحقیقات، تهران، ایران
کلید واژه: مقاومت به خوردگی, اکسید گرافن, پوشش هیبریدی سیلانی, خودترمیم شوندگی,
چکیده مقاله :
هدف این تحقیق، بهبود مقاومت به خوردگی و ایجاد بازدارندگی فعال در پوششهای هیبریدی- سیلانی است. به این منظور از نانوصفحات اکسید گرافن (GO) به عنوان رنگدانه محافظت کننده و آمینوتریس متیلن تری فسفونیک اسید (ATMP) به عنوان حامل بازدارنده آلی در پوشش استفاده شد. پیکهای ظاهر شده در 1059، 1380، 1730 و cm-1 3430 که به ترتیب مربوط به گروههای هیدروکسیل کششی، کربونیل، هیدروکسیل خمشی و اپوکساید هستند که سنتز موفقیت آمیز نانوذرات GO را توسط طیفسنجی انتقال مادون قرمز (FTIR) تایید میکند. جابجایی دو پیک 230 و 250 نانومتر در GO به 261 و 360 نانومتر در GO-ATMP نشاندهنده احیای موفقیتآمیز اکسید گرافن توسط مولکولهای ATMP است. سپس مقاومت به خوردگی پوشش حاوی GO-ATMP با استفاده از آزمون-های طیف سنجی امپدانس الکتروشیمیایی (EIS) و پلاریزاسیون ارزیابی گردید. نتایج نشان داد که بازدارنده ATMP خواص مقاومت به خوردگی پوشش حاوی GO-ATMP را بهبود میبخشد و چگالی جریان خوردگی 50 درصد کاهش یافته است. پس از جذب موفق بازدارنده روی صفحات GO، پوشش هیبریدی-سیلانی حاوی GO-ATMP بر روی ورقههای آلیاژ آلومینیوم 2024 اعمال شد. خواص مقاومت به خوردگی پوششها با استفاده از آزمونهای EIS و پاشش مه نمکی نشان داد که استفاده از GO-ATMP در پوشش، به دلیل محدود کردن دسترسی محیط خورنده به سطح فلز، مقاومت به خوردگی و خواص محافظت کنندگی آنها را بهبود میدهد. رهایش هوشمند بازدارنده در هنگام نفوذ الکترولیت در ناحیه خراش پوشش با تشکیل فیلم محافظ در ناحیه خراش در تصویر SEM این نمونه مشاهده شد. این امر موجب محدود شدن واکنشهای الکتروشیمیایی میشود.
The aim of this research is to improve the corrosion resistance and create the active inhibitory in hybrid-silane coatings. Therefor the graphene oxide (GO) nano-sheets and the methylene triphosphonic acid (ATMP) were used as a protective pigment and organic inhibitor carrier in the coating, respectively. The peaks appearing in 1059, 1380, 1730, and 3430 cm-1 belong to hydroxyl stretching, carbonyl, hydroxyl bending, and epoxide groups confirmed the successful synthesis of GO nanoparticles by infrared transfer spectroscopy (FTIR). The displacement of two peaks of 230 and 250 nm in GO to 261 and 360 nm in GO-ATMP represent the successful reduction of graphene oxide by ATMP molecules. Then, the corrosion resistance of GO-ATMP coating was evaluated using electrochemical impedance spectroscopy (EIS) and polarization tests. The results showed that the ATMP inhibitor improves the corrosion resistance properties of the coating, and the corrosion current density is reduced as 50%. After successfully inhibiting adsorption on GO plates, the coating (GO-ATMP) was applied on 2024 aluminum alloy sheets. The results of EIS and salt-spray tests showed that the corrosion resistance properties of GO-ATMP coatings improved due to restrict the access of corrosive environment to the metal surface. The intelligent releasing of the inhibitor during electrolyte penetration in scratched area of the coating was confirmed by the formation of a protective film in the scratch area in the electron microscope image of the sample. This caused to restrict the electrochemical reactions.
[1] E. Alibakhshi, E. Ghasemi & M. Mahdavian, "Sodium zinc phosphate as a corrosion inhibitive pigment", Prog. Org. Coatings, vol. 77, no. 7, pp. 1155–1162, 2014.
[2] W. Zhang, L. Li, S. Yao & G. Zheng, "Corrosion protection properties of lacquer coatings on steel modified by carbon black nanoparticles in NaCl solution", Corros. Sci. - CORROS SCI, vol. 49, pp. 654–661, 2007.
[3] M. F. Montemor, “Functional and smart coatings for corrosion protection: A review of recent advances,” Surf. Coatings Technol, vol. 258, pp. 17–37, 2014.
[4] M. A. J. Mazumder, H. A. Al-Muallem, M. Faiz & S. A. Ali, "Design and synthesis of a novel class of inhibitors for mild steel corrosion in acidic and carbon dioxide-saturated saline media", Corros. Sci, vol. 87, pp. 187–198, 2014.
[5] Y. Zuo, L. Yang, Y. Tan, Y. Wang & J. Zhao, "The effects of thioureido imidazoline and NaNO2 on passivation and pitting corrosion of X70 steel in acidic NaCl solution", Corros. Sci, vol. 120, 2017.
[6] S. A. Umoren & M. M. Solomon, "Synergistic corrosion inhibition effect of metal cations and mixtures of organic compounds: A Review", J. Environ. Chem. Eng, vol. 5, no. 1, pp. 246–273, 2017.
[7] M. Cullen, M. Morshed, M. O’Sullivan, E. MacHugh, B. Duffy & M. Oubaha, "Correlation between the structure and the anticorrosion barrier properties of hybrid sol–gel coatings: application to the protection of AA2024-T3 alloys", J. Sol-Gel Sci. Technol, vol. 82, no. 3, pp. 801–816, 2017.
[8] B. P. Singh, B. K. Jena, S. Bhattacharjee & L. Besra, "Development of oxidation and corrosion resistance hydrophobic graphene oxide-polymer composite coating on copper", Surf. Coatings Technol, vol. 232, pp. 475–481, 2013.
[9] Z. Xu & C. Gao, "In situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites", Macromolecules, vol. 43, no. 16, pp. 6716–6723, 2010.
[10] M. Mo & et al, "Excellent tribological and anti-corrosion performance of polyurethane composite coatings reinforced with functionalized graphene and graphene oxide nanosheets", RSC Adv, vol. 5, no. 70, pp. 56486–56497, 2015.
[11] W. Xia & et al, "Functionlized Graphene serving as free radical scavenger and corrosion protection in gamma-irradiated epoxy composites,” Carbon N. Y, vol. 101, 2016.
[12] Z. Zhang & et al, "Mechanical and anticorrosive properties of graphene/epoxy resin composites coating prepared by in-situ method", Int. J. Mol. Sci, vol. 16, no. 1, pp. 2239–2251, 2015.
[13] R. K. Gupta, M. Malviya, C. Verma & M. A. Quraishi, "Aminoazobenzene and diaminoazobenzene functionalized graphene oxides as novel class of corrosion inhibitors for mild steel: Experimental and DFT studies", Mater. Chem. Phys, vol. 198, pp. 360–373, 2017.
[14] J. Wang & B. Chen, "Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials", Chem. Eng. J, vol. 281, pp. 379–388, 2015.
[15] P. G. Ren, D. X. Yan, X. Ji, T. Chen & Z. M. Li, "Temperature dependence of graphene oxide reduced by hydrazine hydrate", Nanotechnology, vol. 22, no. 5, pp. 55705, 2011.
[16] A. Dehghani, F. Poshtiban, G. Bahlakeh & B. Ramezanzadeh, 'Fabrication of metal-organic based complex film based on three-valent samarium ions-[bis (phosphonomethyl) amino] methylphosphonic acid (ATMP) for effective corrosion inhibition of mild steel in simulated seawater", Constr. Build. Mater, vol. 239, pp. 117812, 2020.
[17] S. Thakur & N. Karak, "Green reduction of graphene oxide by aqueous phytoextracts", Carbon N. Y., vol. 50, no. 14, pp. 5331–5339, 2012.
[18] A. Dehghani, B. Ramezanzadeh, F. Poshtiban & G. Bahlakeh, "Construction of a highly-effective/sustainable corrosion protective composite nanofilm based on Aminotris(methylphosphonic acid) and trivalent cerium ions on mild steel against chloride solution", Constr. Build. Mater, vol. 261, pp. 119838, 2020.
[19] H. J. Shin & et al, "Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance", Adv. Funct. Mater, vol. 19, no. 12, pp. 1987–1992, 2009.
[20] M. Kasaeian, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian & G. Bahlakeh, "Construction of a highly effective self-repair corrosion-resistant epoxy composite through impregnation of 1H-Benzimidazole corrosion inhibitor modified graphene oxide nanosheets (GO-BIM)", Corros. Sci, vol. 145, pp. 119–134, 2018.
[21] G. D. Vuković & et al, "Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes", Chem. Eng. J, vol. 157, no. 1, pp. 238–248, 2010.
[22] M. Kasaeian, E. Ghasemi, B. Ramezanzadeh, M. Mahdavian & G. Bahlakeh, "A combined experimental and electronic-structure quantum mechanics approach for studying the kinetics and adsorption characteristics of zinc nitrate hexahydrate corrosion inhibitor on the graphene oxide nanosheets", Appl. Surf. Sci, vol. 462, pp. 963–979, 2018.
[23] M. Mahdavian & et al, "Enhancement of silane coating protective performance by using a polydimethylsiloxane additive", J. Ind. Eng. Chem, vol. 55, pp. 244–252, 2017.
_||_