افزایش جذب حبابی دیاکسید کربن در نانو سیال آب/ اکسید نیکل درحضور ماده فعال سطحی
محورهای موضوعی : سرامیک ها و مواد نسوزدانیال جعفری فارسانی 1 , الهام عامری 2 *
1 - دانشگاه آزاد اسلامی واحد شهرضا، ایران
2 - دانشگاه آزاد اسلامی واحد نجف آباد
کلید واژه: نانوسیال, رابطه تجربی, نانوذرات نیکل, سرامیک, جذب گاز,
چکیده مقاله :
جهت رفع مشکلات ناشی از استفاده از حلالهای شیمیایی نظیر محلولهای آمینی و محلول کاستیک، از یک برج جذب تک حبابی برای بررسی تأثیر نانوسیالات پایه آبی با نانوذرات اکسیدنیکل بر فرآیند جذب گاز دی اکسید کربن استفاده شد. برای انجام این کار، دیاکسید کربن، به صورت تک حبابهایی از انتهای یک ستون شامل نانوسیال آب/اکسید نیکل پرشده، وارد شده و ضرایب انتقال جرم و میزان جذب مورد بررسی قرار گرفته شد. برای بررسی اثر کسروزنی نانو ذرات بر فرآیند انتقال جرم در برج تک حبابی سطوح مختلف مورد بررسی قرار گرفته شد. نتایج نشان داد که نانوذرات اکسید نیکل آبگریز بوده و افزودن ماده فعال سطحی به نانوسیال موجب بالا رفتن بار الکتریکی سطحی نانوذرات اکسید نیکل شده و قطبیت سطح را برای جذب گاز بالا می برند. به این ترتیب گاز دیاکسید کربن به دلیل ماهیت بسیار قطبی بر سطح نانوذرات جذب شده واین پدیده موجب افزایش تا 270 درصدی میزان جذب گاز مذکور در نانوسیال نسبت به سیال پایه شد. بیشینه مقدار شار انتقال جرم برای جذب دیاکسید کربن با نانوسیال حاوی نانوذرات اکسیدنیکل در کسر وزنی نانوذرات 1/0 درصد مشاهده شد. در انتها نیز یک رابطه تجربی برای تخمین ضریب انتقال جرم گاز دیاکسید کربن ارائه گردید که این رابطه تابعی از رژیم جریان و نوع نانوسیال میباشد. نتایج نشان داد که مقدار خطای محاسبات برای مدل ارائه شده، کمتر از 20% است و این مدل می توند با تقریب مناسبی نتایج آزمایشگاهی را تخمین بزند.
To solve the problems caused by the use of chemical solvents such as amine solutions and caustic solution, a single bubble adsorption tower was used to investigate the effect of water-based nanofluids with nickel oxide nanoparticles on the CO2 adsorption process. CO2 was introduced as single bubbles from the end of a column, and the mass transfer coefficients and adsorption rates were investigated. The results showed that nickel oxide nanoparticles are hydrophobic and the addition of surfactant to nanofluid increases the surface electric charge of nickel oxide nanoparticles and increases the surface polarity for gas absorption. In this way, carbon dioxide gas is absorbed on the surface of nanoparticles due to its very polar nature, and this phenomenon increased the amount of gas absorption in the nanofluid by 270% compared to the base fluid.The maximum mass transfer flux for adsorption of CO2 with nanofluids containing nickle oxide nanoparticles was observed in the weight fraction of nanoparticles of 0.1%. To investigate the effect of important parameters on the mass transfer process in a single bubble tower, the parameters of nanoparticle weight fraction, gas injection nozzle diameter, with different levels were investigated. Finally, an experimental relationship was presented to estimate the mass transfer coefficient of CO2 gas, which is a function of the flow regime and microscopic structure of nanoparticles. The results showed that the amount of computational error for the proposed model is less than 20% and this model can estimate the laboratory results with a suitable approximation.
- مراجع
[1] S. B. Idso, "Carbon dioxide and global change", 1989.
[2] م. مسائلی و ک. امینی، "بررسی سختی و رفتار تریبولوژیکی نانوکامپوزیت سطحی Al/Al2O3-TiB2 ساخته شده با فرآوری همزن اصطکاکی"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 10، شماره 1، صفحه 125-136، بهار 1395.
[3] م. مکاریان و ا. عامری، "تأثیر نانو ذرات سرامیکی سیلیسیم کاربید بر خواص تریبولوژیکی روغن پایه پارافینیک SN500HVI"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 16، شماره 1، صفحه 27-41، بهار 1401.
[4] س. جبارزارع، ح. ر. بخششی، ح. ر. راد، ا. ع. نوربخش و ت. احمدی،"بررسی شرایط بهینه آسیابکاری در تولید نانوکامپوزیت Mg-3Zn-1Mn"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 16، شماره 1، صفحه 1-10، بهار 1401.
[5] ح. یوسفی و ب. هاشمی، "سنتز نانو ذرات اکسید روی دوپ شده توسط نقره به روش سل-ژل پکینی و مشخصهیابی و بررسی خواص فوتوکاتالیستی آنها"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 12، شماره 4، صفحه 67-79، زمستان 1397.
[6] B. Olle, S. Bucak, T. C. Holmes, L. Bromberg, T. A. Hatton & D. I. Wang, "Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles", Industrial & Engineering Chemistry Research, vol. 45, pp. 4355-4363, 2006.
[7] J. P. Wen, X. Q. Jia & W. Feng, "Hydrodynamic and Mass Transfer of Gas‐Liquid‐Solid Three‐Phase Internal Loop Airlift Reactors with Nanometer Solid Particles", Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, vol. 28, pp. 53-60, 2005.
[8] Z. Samadi, M. Haghshenasfard & A. Moheb, "CO2 absorption using nanofluids in a wetted‐wall column with external magnetic field," Chemical Engineering & Technology, vol. 37, pp. 462-470, 2014.
[9] M. Taheri, A. Mohebbi, H. Hashemipour & A. M. Rashidi, "Simultaneous absorption of carbon dioxide (CO2) and hydrogen sulfide (H2S) from CO2–H2S–CH4 gas mixture using amine-based nanofluids in a wetted wall column", Journal of Natural Gas Science and Engineering, vol. 28, pp. 410-417, 2016.
[10] L. Yang, K. Du, X. F. Niu, B. Cheng & Y. F. Jiang, "Experimental study on enhancement of ammonia–water falling film absorption by adding nano-particles", International Journal of Refrigeration, vol. 34, pp. 640-647, 2011.
[11] J. H. Kim, C. W. Jung & Y. T. Kang, "Mass transfer enhancement during CO2 absorption process in methanol/Al2O3 nanofluids", International Journal of Heat and Mass Transfer, vol. 76, pp. 484-491, 2014.
[12] S. Komati & A. K. Suresh, "Anomalous enhancement of interphase transport rates by nanoparticles: Effect of magnetic iron oxide on gas− liquid mass transfer", Industrial and Engineering Chemistry Research, vol. 49, pp. 390-405, 2009.
[13] I. T. Pineda, J. W. Lee, I. Jung & Y. T. Kang, "CO2 absorption enhancement by methanol-based Al2O3 and SiO2 Nano fluids in a tray column absorber", International Journal of Refrigeration, vol. 35, pp. 1402-1409, 2012.
[14] J. S. Lee, J. W. Lee & Y. T. Kang, "CO2 absorption/regeneration enhancement in DI water with suspended nanoparticles for energy conversion application", Applied Energy, vol. 143, pp. 119-129, 2015.
[15] J. Salimi & F. Salimi, "CO2 capture by water-based Al2O3 and Al2O3-SiO2 mixture nanofluids in an absorption packed column", Revista Mexicana de Ingeniería Química, vol. 15, pp. 185-192, 2016.
[16] S. Krishnamurthy, P. Bhattacharya, P. E. Phelan & R. S. Prasher, "Enhanced Mass Transport in Nanofluids", Nano Letters, vol. 6, pp. 419-423, 2006.
[17] J. W. Lee, J. Y. Jung, S. G. Lee & Y. T. Kang, "CO2 bubble absorption enhancement in methanol-based nanofluids", International Journal of Refrigeration, vol. 34, pp. 1727-1733, 2011.
[18] D. Khafari-Nezhad, E. Ameri & S. H. Esmaeili-Faraj, "Experimental study and modeling of simultaneous absorption of CO2/ H2S mixture by silica water nanofluid in a packed bed column", Journal of Separation Science and Engineering, vol. 13, no. 2, pp. 39-51, 2022.
[19] W. G. Kim, H. U. Kang, K. M. Jung & S. H. Kim, "Synthesis of silica nanofluid and application to CO2 absorption", Separation Science and Technology, vol. 43, pp. 3036-3055, 2008.
[20] M. H. K. Darvanjooghi, M. N. Esfahany, S. H. J. S. Esmaeili-Faraj & P. Technology, "Investigation of the effects of nanoparticle size on CO2 absorption by silica-water nanofluid", Separation and Purification Technology, vol. 195, pp. 208-215, 2018.
[21] S. Lu, J Song, Y. Li, M. Xing & Q. He, "Improvement of CO2 absorption using AL2O3 nanofluids in a stirred thermostatic reactor", Canadian Journal of Chemical Engineering, vol. 93, pp. 935–941, 2015.
[22] M. H. Karimi Darvanjooghi, M. Pahlevaninezhad, A. Abdollahi & S. M. J. A. J. Davoodi, "Investigation of the effect of magnetic field on mass transfer parameters of CO2 absorption using Fe3O4‐water nanofluid", AIChE Journal, vol. 63, pp. 2176-2186, 2017.
_||_