بهینهسازی خواص مکانیکی و دیالکتریک بوسیله کنترل تراکمپذیری و ریزساختار در سرامیکهای نیترید سیلیسیم تهیه شده به روش پرس داغ
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدسیدسلمان سیدافقهی 1 * , امیرحسین کوچکی فروشانی 2 , پوریا دهقانی 3 , فرهود حیدری 4
1 - دانشیار، دانشکده و پژوهشکده فنی و مهندسی، دانشگاه جامع امام حسین (ع)، تهران، ایران.
2 - دانشجوی دکتری، رشته مهندسی مواد - سرامیک، پژوهشکده سرامیک، پژوهشگاه مواد و انرژی، کرج، البرز، ایران
3 - پژوهشگر، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین (ع)، تهران، ایران.
4 - دانشجوی دکتری رشته مهندسی مواد و پژوهشگر مرکز مواد پیشرفته و نانوفناوری، دانشگاه جامع امام حسین (ع)، تهران، ایران
کلید واژه: خواص مکانیکی, دی الکتریک, پرس داغ, تفجوشی, نیتریدسیلیسیم,
چکیده مقاله :
سرامیکهای نیترید سیلیسیم موادی با خواص مکانیکی، دیالکتریک و حرارتی عالی هستند که با دارا بودن چنین ویژگیهایی یکی از کاندیدهای اصلی جهت کاربرد در شرایط محیطی دما بالا است. در این پژوهش اثر دمای تفجوشی بر کنترل ریزساختار و تراکم پذیری و بهینهسازی خواص مکانیکی و دیالکتریک سرامیکهای نیترید سیلیسیم تهیه شده به روش پرس داغ در دماهای مختلف 1500، 1600، 1700 و 1800 درجه سانتیگراد بررسی شده است. از دستگاه میکروسکوپ الکترونی روبشی و پراش اشعه ایکس به ترتیب جهت بررسی ریزساختار و آنالیز فازهای تشکیل شده استفاده شده است. طبق الگوی پراش حاصل از پرتو ایکس و رابطه گازارا-مسیر، در نمونههای سینتر شده در دمای 1600 و1700 درجه سانتیگراد همه فاز آلفا به بتا تبدیل شده و در نمونه سینتر شده در دمای 1500 درجه سانتیگراد میزان تبدیل 95.45% بوده است. نتایج حاکی از آن است که افزایش دمای تفجوشی از1500 به 1800 درجه سانتیگراد منجر به درشتتر شدن دانههای میلهای شکل و دستیابی به ریزساختار دوگانه شده و قطر متوسط دانهها از 0.7 میکرومتر به 1.34 میکرومتر افزایش یافته است. نمونه سینتر شده در دمای 1500درجه سانتیگراد با دارا بودن کمترین مقدار قطر متوسط ( 0.7 میکرومتر) در بین سایر نمونهها، بیشترین مقدار استحکام خمشی 9.5 ± 550 مگاپاسکال را به خود اختصاص داده است. با افزایش اندازه متوسط دانهها و کاهش نسبت فازی α/β در اثر افزایش دمای تفجوشی، میانگین ثابت دیالکتریک و تانژانت اتلاف نمونهها به ترتیب از 4.5 به 9.2 و از 0.099 به 0.22 افزایش یافته است.
Silicon nitride ceramics are materials with excellent mechanical, dielectric and thermal properties which with such properties is one of the main candidates for use in high temperature environments. In this study, the effect of sintering temperature on microstructure control and densification and optimization of mechanical and dielectric properties of silicon nitride ceramics prepared by hot pressing at different temperatures of 1500 °C, 1600 °C, 1700 °C and 1800 °C has been investigated. Scanning electron microscopy and X-ray diffraction have been used to study the microstructure and analysis of the formed phases, respectively. According to the X-ray diffraction pattern and the Gazara-Mesier relationship, in the sintered samples at 1600 °C and 1700 °C, all alpha phases were converted to beta, and in the sintered samples at 1500 °C, the conversion rate was 95.45%. Is. The results show that increasing the sintering temperature from 1500˚C to 1800˚C leads to larger rod-shaped grains and achieves dual microstructure and the average grain diameter has increased from 0.7 µm to 1.34 µm. sintered specimen at 1500 °C, with the lowest average diameter (0.7 µm) among other specimens, has the highest flexural strength of 550 ± 9.5 Mpa. Is By increasing the average grain size and decreasing the α/β phase ratio due to the increase in fusion temperature, the mean dielectric constant and tangent of the sample loss increased from 4.5 to 9.2 and from 0.099 to 0.22, respectively
[1]H. Kaya, "The application of ceramic-matrix composites to the automotive ceramic gas turbine", Compos. Sci. Technol, vol. 59, no. 6, pp. 861–872, May 1999, doi: 10.1016/S0266-3538(99)00016-0.
[2]Z. Krstic & V. D. Krstic, "Silicon nitride: the engineering material of the future", J. Mater. Sci, vol. 47, no. 2, pp. 535–552, Jan. 2012, doi: 10.1007/s10853-011-5942-5.
[3]M. H. Bocanegra-Bernal & B. Matovic, "Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures," Mater. Sci. Eng. A, vol. 527, no. 6, pp. 1314–1338, Mar. 2010, doi: 10.1016/j.msea.2009.09.064.
[4] M. Pettersson, Z. Pakdaman, H. Engqvist, Y. Liu, Z. Shen & E. Östhols, "Spark plasma sintered β-phase silicon nitride with Sr and Ca as a sintering aid for load bearing medical applications", J. Eur. Ceram. Soc, vol. 32, no. 11, pp. 2705–2709, Aug. 2012, doi: 10.1016/j.jeurceramsoc.2011.12.027.
[5] X. J. Liu, Z. Y. Huang, Q. M. Ge, X. W. Sun & L. P. Huang, "Microstructure and mechanical properties of silicon nitride ceramics prepared by pressureless sintering with MgO-Al2O3 -SiO2 as sintering additive", J. Eur. Ceram. Soc, vol. 25, no. 14, pp. 3353–3359, 2005, doi:10.1016/j.jeurceramsoc.2004.08.025.
[6]S. Guo, N. Hirosaki, Y. Yamamoto, T. Nishimura & M. Mitomo, "Dependence of fracture stress on applied stress rate in a Yb2O3-SiO2-doped hot-pressed silicon nitride ceramic", J. Mater. Res, vol. 16, no. 11, pp. 3254–3261, 2001, doi: 10.1557/JMR.2001.0448.
[7] P. F. Becher & et al, "Microstructural Design of Silicon Nitride with Improved Fracture Toughness: I, Effects of Grain Shape and Size", J. Am. Ceram. Soc, vol. 81, no. 11, pp. 2821–2830, Jan. 2005, doi: 10.1111/j.1151-2916.1998.tb02702.x.
[8] V. Sharma, S. Nemat-Nasser & K. S. Vecchio, "Effect of grain-boundary phase on dynamic compression fatigue in hot-pressed silicon nitride", J. Am. Ceram. Soc, vol. 81, no. 1, pp. 129–139, 1998, doi: 10.1111/j.1151-2916.1998.tb02304.x.
[9] I. Bar-On, F. I. Baratta & K. Cho, "Crack stability and its effect on fracture toughness of hot-pressed silicon nitride beam specimens", Journal of the American Ceramic Society, vol. 79, no. 9. pp. 2300–2308, 1996. doi: 10.1111/j.1151-2916.1996.tb08976.x.
[10] ح. صدلاله و ا. نورمحمدی، "اثر فرآیند پرس گرم بر ریزساختار و خواص مغناطیسی آلیاژ نانو بلورین فاینمت"، مواد و فناوریهای پیشرفته، دوره 4، شماره 1، صفحه 54-47، 1394.
[11] ص. منافی و م. خواجه لو، " تولید و ارزیابی خواص نانوکامپوزیت زمینه سرامیکی B4C/BN توسط فرآیند پرس گرم"، نانو مواد، دوره 10، شماره 33، صفحه 58-53، 1396.
[12] H. Liang & et al, "YB2C2: A new additive for fabricating Si3N4 ceramics with superior mechanical properties and medium thermal conductivity", Ceram. Int, vol. 46, no. 4, pp. 5239–5243, Mar. 2020, doi: 10.1016/j.ceramint.2019.10.272.
[13] Y. Han & et al, "Optimum sintering temperature of high quality silicon nitride ceramics under oscillatory pressure", Ceram. Int, vol. 44, no. 6, pp. 6949–6952, Apr. 2018, doi: 10.1016/j.ceramint.2018.01.126.
[14] J. Yang, J. Yang, S. Shan, J. Gao & T. Ohji, "Effect of Sintering Additives on Microstructure and Mechanical Properties of Porous Silicon Nitride Ceramics", J. Am. Ceram. Soc, vol. 89, no. 12, pp. 3843–3845, Dec. 2006, doi: 10.1111/j.1551-2916.2006.01294.x.
[15] W. Liu, W. Tong, X. Lu & S. Wu, "Effects of different types of rare earth oxide additives on the properties of silicon nitride ceramic substrates", Ceram. Int, vol. 45, no. 9, pp. 12436–12442, Jun. 2019, doi: 10.1016/j.ceramint.2019.03.176.
[16] K. Jeong, J. Tatami, M. Iijima & T. Nishimura, "Spark plasma sintering of silicon nitride using nanocomposite particles", Adv. Powder Technol, vol. 28, no. 1, pp. 37–42, Jan. 2017, doi: 10.1016/j.apt.2016.06.027.
[17] S. C. Luo, W. M. Guo, K. Plucknett & H. T. Lin, "Improved toughness of spark-plasma-sintered Si3N4 ceramics by adding HfB2", Ceram. Int, vol. 47, no. 6, pp. 8717–8721, Mar. 2021, doi: 10.1016/j.ceramint.2020.11.201.
[18] W. Liu, W. Tong, R. He, H. Wu & S. Wu, "Effect of the Y2O3 additive concentration on the properties of a silicon nitride ceramic substrate", Ceram. Int, vol. 42, no. 16, pp. 18641–18647, Dec. 2016, doi: 10.1016/j.ceramint.2016.09.001.
[19] Q. G. Jiang & et al, "Influence of powder characteristics on hot-pressed Si3N4 ceramics", Sci. Sinter, vol. 49, no. 1, pp. 81–89, 2017, doi: 10.2298/SOS1701081J.
[20] H. Seiner & et al, "Elastic properties of silicon nitride ceramics reinforced with graphene nanofillers", Mater. Des, vol. 87, pp. 675–680, 2015, doi: 10.1016/j.matdes.2015.08.044.
[21] J. Wippler, S. Fünfschilling, F. Fritzen, T. Böhlke & M. J. Hoffmann, "Homogenization of the thermoelastic properties of silicon nitride", Acta Mater, vol. 59, no. 15, pp. 6029–6038, 2011, doi: 10.1016/j.actamat.2011.06.011.
[22] P. Šajgalik, J. Dusza & M. J. Hoffmann, "Relationship between Microstructure, Toughening Mechanisms, and Fracture Toughness of Reinforced Silicon Nitride Ceramics", J. Am. Ceram. Soc, vol. 78, no. 10, pp. 2619–2624, Oct. 1995, doi: 10.1111/j.1151-2916.1995.tb08031.x.
[23] B. Ma, Y. Tang & C. Deng, "Effects of Al2O3–Y2O3/Yb2O3 additives on microstructures and mechanical properties of silicon nitride ceramics prepared by hot‐pressing sintering", Int. J. Appl. Ceram. Technol, May 2022, doi: 10.1111/ijac.14081.
[24] Q. Dai, D. He, F. Meng, P. Liu & X. Liu, "Materials Science in Semiconductor Processing Dielectric constant, dielectric loss and thermal conductivity of Si3N4 ceramics by hot pressing with CeO2 – MgO as sintering aid", Mater. Sci. Semicond. Process, vol. 121, no. August 2020, p. 105409, 2021, doi: 10.1016/j.mssp.2020.105409.
[25] S. Dahms, F. Gemse, U. Basler, H. P. Martin & A. Triebert, "Diffusion joining of silicon nitride ceramics," Est. J. Eng, vol. 15, no. 4, p. 301, 2009, doi: 10.3176/eng.2009.4.07.
[26] Y. Song, L. Liu, D. Liu, X. Song & J. Cao, "Low-temperature bonding of Cu on Si3N4 substrate by using Ti/Cu thin films", Mater. Lett, vol. 320, p. 132330, 2022, doi: https://doi.org/10.1016/j.matlet.2022.132330.
[27] H. Singh, M. D. Hayat, H. Zhang & P. Cao, "The decomposition of Si3N4 in titanium and its effect on wear properties," Wear, vol. 420–421, pp. 87–95, Feb. 2019, doi: 10.1016/j.wear.2018.12.094.
[28] G. Cotin & et al, "A Confinement‐Driven Nucleation Mechanism of Metal Oxide Nanoparticles Obtained via Thermal Decomposition in Organic Media", Small, vol. 18, no. 20, p. 2200414, May 2022, doi: 10.1002/smll.202200414.
[29] C. C. Ye, W. Q. Wei, X. Fu, C. H. Wang & H. Q. Ru, "Effect of sintering activation energy on Si3N4 composite ceramics", Ceram. Int, vol. 48, no. 4, pp. 4851–4857, 2022, doi:https://doi.org/10.1016/j.ceramint.2021.11.021.
[30] A. H. Nassajpour-Esfahani, A. Alhaji, M. R. Hahftbaradaran-Esfahani, R. Emadi & A. Bahrami, "Oxidation and phase transformation behaviors of Si3N4-xMgAl2O4 (0 < x < 90 wt.%) nanocomposites in vacuum, air, and nitrogen atmospheres", Ceram. Int, vol. 47, no. 21, pp. 30807–30814, 2021, doi:https://doi.org/10.1016/j.ceramint.2021.07.261.
[31]C. Ye & et al, "Investigation on thermal conductivity and mechanical properties of Si3N4 ceramics via one-step sintering", Ceram. Int, vol. 47, no. 23, pp. 33353–33362, 2021, doi: https://doi.org/10.1016/j.ceramint.2021.08.238.
[32] Y. Wang & et al, "Synthesis of monodisperse and high-purity α-Si3N4 powder by carbothermal reduction and nitridation", Adv. Powder Technol, vol. 32, no. 8, pp. 3101–3106, 2021, doi:https://doi.org/10.1016/j.apt.2021.06.023.
[33] Z. Liu & et al, "Liquid-Phase-Assisted Catalytic Nitridation of Silicon and In Situ Growth of &alpha-Si3N4", Materials (Basel), vol. 15, no. 17, 2022, doi: 10.3390/ma15176074.
[34] H. Ding, Y. Hu, X. Li, Z. Zhao & H. Ji, "Microstructure, mechanical properties and sintering mechanism of pressureless-sintered porous Si3N4 ceramics with YbF3-MgF2 composite sintering aids", Ceram. Int, vol. 46, no. 2, pp. 2558–2564, Feb. 2020, doi: 10.1016/j.ceramint.2019.09.114.
[35] A. Kumar, R. S. Rana, R. Purohit, K. K. Saxena, J. Xu & V. Malik, "Metallographic Study and Sliding Wear Optimization of Nano Si3N4 Reinforced High-Strength Al Metal Matrix Composites", Lubricants, vol. 10, no. 9, 2022, doi: 10.3390/lubricants10090202.
[36] J. Xu, K. Hattori, Y. Seino & I. Kojima, "Microstructure and properties of CrN/Si3N4 nano-structured multilayer films", Thin Solid Films, vol. 414, no. 2, pp. 239–245, 2002, doi:https://doi.org/10.1016/S0040-6090(02)00483-2.
[37] F. Hu, T. Zhu, Z. Xie & J. Liu, "Effect of composite sintering additives containing non-oxide on mechanical, thermal and dielectric properties of silicon nitride ceramics substrate", Ceram. Int, vol. 47, no. 10, pp. 13635–13643, May 2021, doi: 10.1016/j.ceramint.2021.01.224.
[38] C. E. Lee, M. J. Kim, Y. J. Park, J. W. Ko, H. N. Kim & S. Bae, "The effect of silicon particle size on the characteristics of porous sintered reaction bonded silicon nitride", Int. J. Refract. Met. Hard Mater, vol. 101, no. July, p. 105647, 2021.
[39] A. R. Von Hippel, "Dielectric Materials and Applications", Artech House, 1995.
[40] C. Gabriel, S. Gabriel, E. H. Grant, E. H. Grant, B. S. J. Halstead & D. Michael P. Mingos, "Dielectric parameters relevant to microwave dielectric heating", Chem. Soc. Rev, vol. 27, no. 3, pp. 213–224, 1998, doi: 10.1039/A827213Z.
[41] O. A. Lukianova & V. V. Sirota, "Dielectric properties of silicon nitride ceramics produced by free sintering", Ceram. Int, vol. 43, no. 11, pp. 8284–8288, Aug. 2017, doi: 10.1016/j.ceramint.2017.03.161.
6- پینوشت
[1] Hot Press
[2] Spark Plasma Sintering
[3] Hot Isostatic Pressing
[4] Liu et al
[5] Jiang et al
[6] Gazara-Meseir
[7] Park et al