مشخصه¬یابی و بررسی زیست¬سازگاری شیشه زیست¬فعال 60mol%SiO2-36mol%CaO-4mol%P2O5-5mol%SrO حاوی روی
محورهای موضوعی : بیوموادنوشین نانکلی 1 * , امیرحسین مغنیان 2 , مرتضی ثقفی یزدی 3
1 - دانشجوی کارشناسی ارشد، مهندسی مواد، گروه مهندسی مواد و متالورژی، دانشگاه بینالمللی امام خمینی (ره)، قزوین، ایران.
2 - مهندسی و علم مواد، دانشکده فنی مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین
3 - مهندسی و علم مواد، دانشکده بین امللی امام خمینی (ره)، قزوین
کلید واژه: شیشه زیستفعال اصلاحشده, هیدروکسیآپاتایت, استرانسیم-روی.,
چکیده مقاله :
در این پژوهش، شیشهی زیستفعال 60mol%SiO2-36mol%CaO-4mol%P2O5-5mol%SrO حاوی 0، 5 و 8 درصد مولی روی به روش سُل-ژل سنتز شده و اثر مقدار افزودن عنصر روی بر ریزساختار، زیستفعالی برونتنی (In vitro) و زیستسازگاری مورد بررسی قرارگرفت. برای بررسی زیستفعالی، پودر شیشهها تا 14 روز در محلول شبیهسازیشده بدن (SBF) قرار داده شدند و قبل و بعد از بازههای زمانی مذکور، تغییرات و روند تشکیل فاز هیدروکسیآپاتایت روی سطح آنها، با استفاده از مطالعات طیفسنجی تبدیل فوریه فروسرخ (FTIR)، بررسی نرخ رهایش یونهای مختلف از شیشههای سنتزشده توسط روش طیفسنجی پلاسمای جفتشده القایی (ICP_AES)، تغییرات pH و مطالعات ریزساختار با استفاده از میکروسکوپ الکترونی روبشی (SEM)، بررسی شد. در آنالیز طیفسنجی تبدیل فوریه فروسرخ سطح شیشههای زیستفعال سنتزشده پس از غوطهوری در محلول SBF و باندهای فسفات و کربنات شناسایی شد که بیانگر زیستفعالی شیشههای سنتزشده می باشد. همچنین تصاویر میکروسکوپ الکترونی روبشی، نشان داد که ریزساختار هیدروکسیآپاتایت ایجادشده، به شکل کروی بوده است. در نهایت از بین تمامی شیشههای زیستفعال سنتزشده در این پژوهش، شیشه زیستفعال S5Z5 با داشتن خواص استخوانزایی، زیستسازگاری و زیستفعالی به عنوان یک ماده زیستی نوین چند منظوره در مهندسیبافت استخوان معرفی میگردد.
In this research, bioactive glasses 60mol%SiO2-36mol%CaO-4mol%P2O5-5mol%SrO containing 0, 5, and 8 mol% zinc were synthesized by sol-gel method, and the effect of adding ZnO microstructure, in vitro bioactivity and biocompatibility was investigated. To investigate the in vitro bioactivity, glass powders were placed in the simulated body solution (SBF) for 14 days, and before and after the mentioned periods, the changes and process of hydroxyapatite (HA) phase formation on BGs surfaces, using characterization methods. Fourier transform infrared (FTIR), checking the release rate of different ions by inductively coupled plasma spectroscopy (ICP_AES), pH changes, and microstructure studies using a scanning electron microscope (SEM) were investigated. In the infrared Fourier transform spectroscopic analysis of the surface of the synthesized bioactive glasses after immersion in SBF solution, phosphate and carbonate bands were detected, indicating the synthesized glasses' bioactivity. Also, the scanning electron microscope images showed that the microstructure of HA created was spherical. Finally, among all the bioactive glasses synthesized in this research, S5Z5 bioactive glass was introduced as a new multi-functional biological bio-material in bone tissue engineering due to its osteogenic, biocompatibility, and bioactivity in vitro properties.
[1] M. S. Al-Buriahi, Z. A. Alrowaili, C. Eke & et al, "An important role of Ba2+, Sr2+, Mg2+, and Zn2+ in the radiation attenuation performance of CFCBPC bioactive glasses", J Aust Ceram Soc, vol. 58, pp. 461–473 2022.
[2] J. R. Jones, "Review of bioactive glass: from Hench to hybrids", Acta Biomater, vol. 9, pp. 4457, 2013.
[3] L. Hench, I. Xynos & J. Polak, "Bioactive glasses for in situ tissue regeneration", J. Biomater. Sci. Polym. Ed. vol. 15, pp. 543–562, 2004.
[4] M. Elsa & A. Moghanian, "Comparative study of calcium content on in vitro biological and antibacterial properties of silicon-based bioglass", Int. J. Civ. Mech. Eng, vol. 13, pp. 288–295, 2019.
[5] A. Hoppe, N. S. Guldal & A. R. "Boccaccini", Biomaterials, vol. 32, pp. 2757, 2011.
[6] A. Ebrahim Z. Y. Mahdy, M. Khattari, Waheed S. Salem & Ibrahim. "Study the structural, physical, and optical properties of CaO–MgO–SiO2–CaF2 bioactive glasses with Na2O and P2O5 dopants", J. Materials Chemistry and Physics. vol. 286. P. 126231. 2022.
[7] L. Hench, R. Splinter, W. Allen & T. Greenlee, "Bonding mechanisms at the interface of ceramic prosthetic materials", J. Biomed. Mater. Res, vol. 5, pp. 117–141, 1971.
[8] P. Kumar, B. Dehiya & A. Sindhu, "Bioceramics for hard tissue engineering applications: a review", Int. J. Appl. Eng. Res, vol. 5, pp. 2744–2752, 2018.
[9] M. D. O Donnell, P. L. Candarlioglu, C. A. Miller, E. Gentleman, M. M. Stevens, J. P. Zhong, X. Y. Liu, J. Chang, E. L. Cabarcos, K. D. Luk, W. K. Chan, J. C. Leong & P. J. Meunier, "Materials characterisation and cytotoxic assessment of strontium-substituted bioactive glasses for bone regeneration", J. Mater. Chem, vol. 20, no. 40, pp. 8934, 2010.
[10] K. M. Ereiba, A. S. Abd Raboh & A. G. Mostafa, "Characterization of some bioactive glasses based onSiO2 –CaO–P2 O5 –SrO quaternary system prepared by sol–gel method", Nat. Sci., vol. 12, no. 5, 2014.
[11] E. Bonnelye, A. Chabadel, F. Saltel & P. Jurdic, "Dual Effect of Strontium Ranelate: Stimulation of Osteoblast Differentiation and Inhibition of Osteoclast Formation and Resorption In Vitro", Bone, pp. 129-138, 2008.
[12] C. T. Chasapis, A. C. Loutsidou, C. A. Spiliopoulou & M. E. Stefanidou, "Zinc and human health: an update", Arch. Toxicol, pp. 521–534, 2012.
[13] N. Mutlu, F. Kurtuldu, I. Unalan, Z. Neščáková, H. Kaňková, D. Galusková, M. Michálek, L. Liverani, D. Galusek & A. R. Boccaccini, "Effect of Zn and Ga doping on bioactivity, degradation, and antibacterial properties of borate 1393-B3 bioactive glass", J. Ceramics International, vol. 48, pp. 16404-16417, 2022.
[14] Q. Chen, X. Zhao, W. Lai, Zh. Li, D. You, Zh. Yu, W. Li & X. Wang, "Surface functionalization of 3D printed Ti scaffold with Zn-containing mesoporous bioactive glass", J Surface and Coatings Technology, vol. 435, pp. 128236, 2022.
[15] J. Ovesen, B. Moller-madsen, G. Thomsen, G. Danscher & L. Mosekilde, "The Positive effects of zinc on skeletal strength in growing rats", Bone, vol. 29, no. 6, pp. 565–570, 2001.
[16] X. Shen, K. H. Ru Yie, X. Wu, Z. Zhou, A. Sun, A. M. Al-bishari, K. Fang, M. A. Al- Baadani, Zh. Deng, P. Ma & J. Liu, "Improvement of aqueous stability and anti-osteoporosis properties of Zn-MOF coatings on titanium implants by hydrophobic raloxifene", J Chemical Engineering Journal, vol. 430, pp. 133094, 2022.
[17] J. R. Jones, "Review of bioactive glass: From Hench to hybrids", Acta Biomater, vol. 9, no. 1, pp. 4457–4486, 2013.
[18] J. R. Jones, “Review of bioactive glass: From Hench to hybrids,” Acta Biomater., vol. 9, no. 1, pp. 4457–4486, 2013.
[19] E. Bonnelye, A. Chabadel, F. Saltel & P. Juridic, "Dual effect of strontium ranelate: Stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro", Bone, vol. 42, no. 1, pp. 129–138, Jan. 2008.
[20] A. Houaoui & J. Massera, "Bioactive Glasses in Orthopedics. Biofabrication for Orthopedics: Methods", Techniques and Applications, no. 1, pp: 211-241, 2022.
[21] A. Moghanian, S. Firoozi & M. Tahriri, "Characterization, in vitro bioactivity and biological studies of sol-gel synthesized SrO substituted 58S bioactive glass", Ceram. Int., 2017.
[22] E. Saino, S. Grandi, E. Quartarone, V. Maliardi, D. Galli, N. Bloise, L. Fassina, M. G. C. D. Angelis, P. Mustarelli, M. Imbriani & L. Visai, "In vitro calcified matrix deposition by human osteoblasts onto a zinc-containing bioactive glass", Eur. Cells Mater., 2011.
[23] N. J. Lakhkar, E. A. Abou Neel, V. Salih & J. C. Knowles, “Strontium oxide doped quaternary glasses: effect on structure, degradation and cytocompatibility", J. Mater. Sci. Mater. Med, vol. 20, no. 6, pp. 1339–1346, Jun. 2009.
[24] T. Kokubo & Takadama, "How useful is SBF in predicting in vivo bone bioactivity? ", Biomaterials, vol. 27, no. 15, pp. 2907-2915, 2006.
[25] M. C. Enright, D. A. Robinson, G. Randle, E. J. Feil, H. Grundmann & B. G. Spratt, "The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA)", Proc. Natl. Acad. Sci. U. S. A., vol. 99, no. 11, pp. 7687–7692, May 2002.
[26] M. Shams, M. Karimi, M. Ghollasi, N. Nezafati & A. Salimi, "Electrospun poly-l-lactic acid nanofibers decorated with melt-derived S53P4 bioactive glass nanoparticles: the effect of nanoparticles on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro", Ceramics International, vol. 44, no. 16, pp. 20211–20219, 2018.
[27] S. Hesaraki, M. Gholami, S. Vazehrad & S. Shahrabi, "The effect of Sr concentration on bioactivity and biocompatibility of sol–gel derived glasses based on CaO–SrO–SiO2–P2O5 quaternary system", Materials Science and Engineering: C, vol. 30, no. 3, pp. 383–390, 2010.
[28] N. Nezafati F. Moztarzadeh & S. Hesaraki, "Surface reactivity and in vitro biological evaluation of sol gel derived silver/calcium silicophosphate bioactive glass" Biotechnology and Bioprocess Engineering, vol.17, no. 4, 746–754, 2012.
[29] A. Oki, B. Parveen, S. Hossain, S. Adeniji & H. Donahue, "Preparation and in vitro bioactivity of zinc containing sol‐gel–derived bioglass materials", Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, vol. 69, no. 2, pp. 216–221, 2004.
[30] X. Wu, G. Meng, Sh. Wang, F. Wu, W. Huang & Zh. Gu, "Zn and Sr incorporated 64S bioglasses: Material characterization", In-vitro bioactivity and mesenchymal stem cell responses, vol. 52, pp. 246, 2015.
[31] M. Elgendy, M. E. Norman, A. R. Keaton & C. T. Laurencin, "Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: An approach towards the development of a bone-bioerodible polymer composite material", Biomaterials, vol. 14,
pp. 263-269, 1993.
[32] Y. C. Fredholm, N. Karpukhina, D. S. Brauer, J. R. Jones, R. V. Law & R. G. Hill, Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation", Journal of the Royal Society Interface, vol. 9, no. 70, pp. 880-889, 2012.
[33] J. Bejarano, P. Caviedes & H. Palza, "Sol–gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics", Biomedical Materials, vol. 10, no. 2, 25001, 2015.
[34] م. خورسند قاینی، "بررسی خصوصیات حرارتی کامپوزیت پلی لاکتیک اسید با ذرات شیشه زیستفعال 5S45 و هیدروکسیآپاتایت (HA) بهمنظور استفاده در پیچهای تداخلی قابل جذب"، فرآیندهای نوین در مهندسی مواد، دوره 11، شماره 4، صفحه 56-55، 1396.
]35[ م. نصر اصفهانی، "مقایسه خواص فیزیکی-شیمیایی سه نوع پوشش نانو ساختار شیشه زیستفعال و زیستفعالی آنها"، فرآیندهای نوین در مهندسی مواد، دوره 3، شماره 1، صفحه 35-29، 1388.