بررسی خواص نوری، مورفولوژی و اندازه نانو ذرات نقره تهیه شده با لیزر Nd:YAG نانوثانیه در مایع
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیداحسان نادری سامانی 1 * , سید رضا شجاع رضوی 2 , مهدی غلام پور 3 , مهدی پولادزاده 4 , حامد نادری سامانی 5
1 - کارشناسی ارشد، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوریهای ساخت، تهران، ایران.
2 - استاد، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوریهای ساخت، تهران، ایران.
3 - استادیار، دانشگاه افسری امام علی (ع)، گروه فیزیک دانشکده علوم پایه، تهران، ایران.
4 - محقق، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوریهای ساخت، تهران، ایران.
5 - محقق، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوریهای ساخت، تهران، ایران.
کلید واژه: سنتز نانو ذرات نقره, فرایند فرسایش لیزری, محلول کلوئیدی,
چکیده مقاله :
در این مطالعه اثر طولموج، دمای محلول و محیط سنتز روی ماهیت نانو ذرات نقره تهیه شده به روش فرسایش لیزری در مایع با استفاده از لیزر: نانوثانیه مورد بررسی قرار گرفت. نانو ذرات نقره با استفاده از روش در طولموجهای 532 و 1064، در دمای محیط و حمام یخ در آب مقطر سنتز شدند که بهترین نتایج مربوط به طولموج 1064 و دمای محیط بود. پس از یافتن طولموج و دمای بهینه (طولموج 1064 و دمای محیط)، سنتز نانو ذرات نقره در محیطهای آب مقطر، استون، ستیل تری متیل آمونیوم کلرید ، سدیم دودسیل سولفات و پلی وینیل پیرولیدون انجام گرفت. برای مشخصه یابی نانو ذرات سنتز شده از آنالیزهای طیفسنجی نوری مرئی – فرابنفش ، طیفسنجی جذب اتمی ، پراش نور دینامیکی ، ميكروسكپ الكتروني روبشي گسیل میدانی میکروسکپ نیروی اتمی ، میکروسکپ الکترونی عبوری با بزرگنمایی بالا و الگوی پراش پرتوایکس استفاده شد. نتایج نشان داد که اندازه و بازده نانو ذرات نقره سنتز شده تحت تأثیر طولموج لیزر، دمای محلول و محیط سنتز است. نانو ذرات سنتز شده در محیطهای مختلف دارای اندازه ذرات نانومتری و مورفولوژی کروی میباشند. بالاترین میزان بازده تولید نانو ذرات در محلول برابر با 8/33 است. میانگین اندازه نانو ذرات و بلورکهای نانو ذرات نقره سنتز شده در محیط استون با توجه به آنالیزهای به ترتیب برابر با 65 و 44 به دست آمد.
In this study, the effect of wavelength, liquid temperature and synthesis environment on the nature of silver nanoparticles prepared by laser ablation in liquid (LAL) using nanosecond Nd:YAG laser was investigated. Silver nanoparticles were synthesized using the LAL method at wavelengths of 532 nm and 1064 nm, at ambient temperature and ice bath in distilled water, and the best results were related to the wavelength of 1064 nm and ambient temperature. After finding the optimal wavelength and temperature (wavelength 1064 nm and ambient temperature), silver nanoparticles were synthesized in distilled water, acetone, cetyltrimethylammonium chloride (CTAC), sodium dodecyl sulfate (SDS), and polyvinylpyrrolidone (PVP). For the characterization of synthesized nanoparticles from ultraviolet visible spectroscopy (UV-Vis), atomic absorption spectroscopy (AAS), dynamic light Scattering (DLS), field emission scanning electron microscopy (FE-SEM), atomic Force Microscopy (AFM) ), high Resolution-Transmission Electron Microscopy (HR-TEM) and X-ray diffraction (XRD) were used. The results showed that the size and yield of synthesized silver nanoparticles are affected by laser wavelength, liquid temperature and synthesis environment. Nanoparticles synthesized in different environments have nanometer particle size and spherical morphology. The highest production efficiency of nanoparticles in SDS solution equals 33.8 ppm. According to HR-TEM and XRD analysis, the size of nanoparticles and crystallite of silver nanoparticles synthesized in an acetone environment were 65 nm and 44 nm, respectively.
[1] E. A. Ganash, "Synthesis of silver nanoparticles using pulsed laser ablation in liquid: a review", Laser Physics Letters, vol. 20, no. 1, p. 013001, 2022.
[2] A. M. Ondieki & et al., "Fabrication of surface-enhanced Raman spectroscopy substrates using silver nanoparticles produced by laser ablation in liquids", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, p. 122694, 2023.
[3] E. Fazio & et al., "Nanoparticles engineering by pulsed laser ablation in liquids: Concepts and applications", Nanomaterials, vol. 10, no. 11, p. 2317, 2020.
[4] M. L. Soriano, C. Ruiz-Palomero & M. Valcárcel, "Ionic-liquid-based microextraction method for the determination of silver nanoparticles in consumer products", Analytical and bioanalytical chemistry, vol. 411, pp. 5023-5031, 2019.
[5] F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow & H. Sawabe, "Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation", The Journal of Physical Chemistry B, vol. 104, no. 35, pp. 8333-8337, 2000.
[6] H. H. Rashed & M. Wahid, "Examination of Silver Nanoparticles Formation by Laser Ablation in Organic Liquids", International Journal of Nanoelectronics & Materials, vol. 12, no. 3, 2019.
[7] A. O. Kucherik & et al., "Cavitation‐Free Continuous‐Wave Laser Ablation from a Solid Target to Synthesize Low‐Size‐Dispersed Gold Nanoparticles", ChemPhysChem, vol. 18, no. 9, pp. 1185-1191, 2017.
[8] C. G. Moura & et al., "Effects of laser fluence and liquid media on preparation of small Ag nanoparticles by laser ablation in liquid", Optics & Laser Technology, vol. 97, pp. 20-28, 2017.
[9] R. Zakaria, M. Mahbub & C. Lim, "Studies of Surface Plasmon Resonance Effect on Different Metallic Layers of Silver (Ag) and Copper (Cu) with Molybdenum Trioxide (MoO3) for Formaldehyde Sensor", Results in Optics, p. 100374, 2023.
[10] C.-H. Tsai, S.-Y. Chen, J.-M. Song, I.-G. Chen, and H.-Y. Lee, "Thermal stability of Cu@ Ag core–shell nanoparticles", Corrosion Science, vol. 74, pp. 123-129, 2013.
[11] W. T. Osowiecki, X. Ye, P. Satish, K. C. Bustillo, E. L. Clark & A. P. Alivisatos, "Tailoring morphology of Cu–Ag nanocrescents and core–shell nanocrystals guided by a thermodynamic model", Journal of the American Chemical Society, vol. 140, no. 27, pp. 69-85, 2018.
[12] S. Tan, X. Zu, G. Yi & X. Liu, "Synthesis of highly environmental stable copper–silver core–shell nanoparticles for direct writing flexible electronics", Journal of Materials Science: Materials in Electronics, vol. 28, pp. 15899-15906, 2017.
[13] A. Hamad, L. Li, Z. Liu, X. L. Zhong & T. Wang, "Picosecond laser generation of Ag–TiO 2 nanoparticles with reduced energy gap by ablation in ice water and their antibacterial activities", Applied Physics A, vol. 119, pp. 1387-1396, 2015.
[14] A. H. Hamad, "Nanosecond laser generation of silver nanoparticles in ice water", Chemical Physics Letters, vol. 755, p. 137782, 2020.
[15] K. A. Elsayed, H. Imam, M. Ahmed & R. Ramadan, "Effect of focusing conditions and laser parameters on the fabrication of gold nanoparticles via laser ablation in liquid", Optics & Laser Technology, vol. 45, pp. 495-502, 2013.
[16] P. Chewchinda, T. Tsuge, H. Funakubo, O. Odawara & H. Wada, "Laser wavelength effect on size and morphology of silicon nanoparticles prepared by laser ablation in liquid", Japanese Journal of Applied Physics, vol. 52, no. 2R, p. 025001, 2013.
[17]M. J. Haider & M. S. Mahdi, "Effect of laser wavelengths on the silver nanoparticles size prepared by PLAL", Engineering and Technology Journal, vol. 34, no. 7, pp. 1324-1334, 2016.
[18] L. Torrisi and A. Torrisi, "Laser ablation parameters influencing gold nanoparticle synthesis in water", Radiation Effects and Defects in solids, vol. 173, no. 9-10, pp. 729-739, 2018.
[19] T. Tsuji, K. Iryo, N. Watanabe & M. Tsuji, "Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size", Applied surface science, vol. 202, no. 1-2, pp. 80-85, 2002.
[20] J. W. Strutt, "LVIII. On the scattering of light by small particles", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 41, no. 275, pp. 447-454, 1871.
[21] A. Wazeer, A. Das, A. Sinha & A. Karmakar, "Nanomaterials synthesis via laser ablation in liquid: a review", Journal of The Institution of Engineers (India): Series D, vol. 104, no. 1, pp. 413-426, 2023.
[22] R. Tilaki, A. Iraji Zad & S. Mahdavi, "Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media", Applied Physics A, vol. 84, pp. 215-219, 2006.
[23] R. Baiee, Z. Liu & L. Li, "Understanding the stability and durability of laser-generated Ag nanoparticles and effects on their antibacterial activities", Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 10, no. 3, p. 035001, 2019.
[24] S. Petrović & et al., "Agglomeration in core-shell structure of CuAg nanoparticles synthesized by the laser ablation of Cu target in aqueous solutions", Journal of Optics, vol. 17, no. 2, p. 025402, 2015.
[25] R. R. John, "CRC handbook of Chemistry and Physics", ed: CRC Press Boca Raton, FL, 2019.
[26] M. H. Mahdieh & B. Fattahi, "Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence", Applied surface science, vol. 329, pp. 47-57, 2015.
[27] Y. Jianfeng, Z. Guisheng, H. Anming & Y. N. Zhou, "Preparation of PVP coated Cu NPs and the application for low-temperature bonding", Journal of Materials Chemistry, vol. 21, no. 40, pp. 15981-15986, 2011.
[28] A. Letzel, B. Gokce, A. Menzel, A. Plech & S. Barcikowski, "Primary particle diameter differentiation and bimodality identification by five analytical methods using gold nanoparticle size distributions synthesized by pulsed laser ablation in liquids", Applied Surface Science, vol. 435, pp. 743-751, 2018.
[29] R. G. Nikov, N. Nedyalkov & D. Karashanova, "Laser ablation of Ni in the presence of external magnetic field: Selection of microsized particles", Applied Surface Science, vol. 518, p. 146211, 2020.
[30] "Materials Talks, Polydispersity – what does it mean for DLS and chromatography?, malvern panalytical, https://www.materials-talks.com/polydispersity-what-does-it-mean-for-dls-and-chromatography/, plasmatour/img001.jpg, Last modified: 23 October 2017".
[31] N. F. V. Borrero, J. M. C. da Silva Filho, V. A. Ermakov & F. C. Marques, "Silver nanoparticles produced by laser ablation for a study on the effect of SERS with low laser power on N719 dye and Rhodamine-B", MRS Advances, vol. 4, no. 11-12, pp. 723-731, 2019.
[32] D. Oseguera-Galindo, A. Martinez-Benitez, A. Chavez-Chavez, G. Gomez-Rosas, A. Perez-Centeno & M. Santana-Aranda, "Effects of the confining solvent on the size distribution of silver NPs by laser ablation", Journal of Nanoparticle Research, vol. 14, pp. 1-6, 2012.
[33] P. H. Megat Abdul Hedei, S. K. Alsaee, A. F. Omar, U. Hashim & N. H. Mohd Kaus, "Spectral aging of gold and silver nanoparticles synthesized by laser ablation in liquids", Journal of Nanophotonics, vol. 13, no. 2, pp. 020502-020502, 2019.
[34] H. Naderi-Samani, R. S. Razavi, M. R. Loghman-Estarki & M. Ramazani, "The effects of organoclay on the morphology and mechanical properties of PAI/clay nanocomposites coatings prepared by the ultrasonication assisted process", Ultrasonics Sonochemistry, vol. 38, pp. 306-316, 2017.