بررسی تأثیر دانسیته جریان اعمالی بر خواص ترشوندگی پوشش سریم اکسید تولید شده به روش رسوبدهی الکتروشیمیایی
محورهای موضوعی : عملیات حرارتینوید احمدی زاده 1 , پوریا نجفی سیار 2 *
1 - دانشجوی کارشناسی ارشد، بخش مهندسی مواد، دانشکده مهندسی، دانشگاه شیراز، شیراز، ایران
2 - استادیار، بخش مهندسی مواد، دانشکده مهندسی، دانشگاه شیراز، شیراز، ایران
کلید واژه: رسوبدهی الکتروشیمیایی, سریم اکسید, آبگریزی, جذب هیدروکربن,
چکیده مقاله :
در این تحقیق پوشش سریم اکسید به روش رسوبدهی الکتروشیمیایی بر روی زیرلایه مس ایجاد شد. تأثیر دانسیته جریان اعمالی بر مورفولوژی، ساختار کریستالی، شیمی سطح، زبری سطح و رفتار ترشوندگی پوششها به ترتیب به وسیله میکروسکوپ الکترونی روبشی، آزمون تفرق اشعه ایکس، طیف سنجی تبدیل فوریه اشعه مادون قرمز، میکروسکوپ نیروی اتمی و اندازهگیری زاویه تماس آب بر روی پوششها بررسی شدند. نتایج حاصل نشان دادند که با افزایش دانسیته جریان اعمالی پوششهایی ضخیمتر با میزان ترک سطحی و زبری بیشتر تولید میشوند. همچنین صفحات کریستالی (۰۰۲) در پوششهای تولید شده در دانسیته جریانهای کمتر، رشد بیشتری داشتند و این پوششها دارای اندازه بلور بزرگتری بودند. با اعمال دانسیته جریانهای بیشتر، رفتار آبدوستی پوششهای سریا بیشتر شد. اگرچه در ابتدا پوششهای سریا رفتاری آبدوست داشتند اما پس از قرار گرفتن در معرض هوا و جذب هیدروکربن آبگریز شدند. پوششهای ساخته شده در دانسیته جریانهای بالاتر میزان جذب هیدروکربن بیشتری از خود نشان دادند.
In this study, cerium oxide coatings were fabricated by electrochemical deposition method on copper substrates. The effect of applied current density on morphology, crystallographic structure, surface chemistry, surface roughness & wetting property of coatings was investigated by scanning electron microscopy, X-ray diffractometry, Fourier transform infra-red spectroscopy, atomic force microscopy & static water contact angle measurement methods. The results showed that, by increasing the applied current density, cerium oxide coatings become thicker & rougher including more cracks. Also decreasing of applied current density lead to enhanced growth of (002) crystallographic planes & crystallite size in the microstructure of cerium oxide coatings. More hydrophilic cerium oxide coatings were fabricated at higher applied current densities. Although as-deposited cerium oxide coatings were hydrophilic but their behavior changed to hydrophobic as a result of long exposure to atmosphere & hydrocarbon adsorption. The hydrocarbon adsorption was higher in the case of cerium oxide coatings fabricated at higher applied current densities.
[1]Y. Gu et al., "Research progress of biomimetic superhydrophobic surface characteristics, fabrication, & application," Adv. Mech. Eng., vol. 9, no. 12, pp, 1–13, 2017, doi: 10.1177/1687814017746859.
[2]J. Tam, G. Palumbo & U. Erb, "Recent advances in superhydrophobic electrodeposits," Materials (Basel)., vol. 9, no. 3, pp, 1–27, 2016, doi: 10.3390/ma9030151.
[3] ب. بکا، ح. غیور و ف. کریمخانی، "تأثیر ضخامت بذر لایه بر آبگریزی نانومیله های"ZnO ، فرآیندهای نوین در مهندسی مواد، دوره، 9، شماره، 1، ص 221-211، 1394.
[4]G. Azimi, R. Dhiman, H. M. Kwon, A. T. Paxson & K. K. Varanasi, "Hydrophobicity of rare-earth oxide ceramics," Nat. Mater., vol. 12, no. 4, pp, 315–320, 2013, doi: 10.1038/nmat3545.
[5]S. L. Sanjay, B. G. Annaso, S. M. Chavan & S. V. Rajiv, "Recent progress in preparation of superhydrophobic surfaces: a review," J. Surf. Eng. Mater. Adv. Technol., vol. 2, no. April, pp, 76–94, 2012.
[6]K. Nakayama, T. Hiraga, C. Zhu, E. Tsuji, Y. Aoki & H. Habazaki, "Facile preparation of self-healing superhydrophobic CeO 2 surface by electrochemical processes," Appl. Surf. Sci., vol. 423, pp, 968–976, 2017, doi: 10.1016/j.apsusc.2017.07.012.
[7]T. Ishizaki, Y. Masuda & M. Sakamoto, "Corrosion resistance & durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film & fluoroalkylsilane molecules in corrosive NaCl aqueous solution," Langmuir, vol. 27, no. 8, pp, 4780–4788, 2011, doi: 10.1021/la2002783.
[8]A. F. Feil & et al., "Micro & nano-texturization of intermetallic oxide alloys by a single anodization step: Preparation of artificial self-cleaning surfaces," ACS Appl. Mater. Interfaces, vol. 3, no. 10, pp, 3981–3987, 2011, doi: 10.1021/am200854r.
[9]F. Pedraza, S. A. Mahadik & B. Bouchaud, "Synthesis of ceria based superhydrophobic coating on Ni20Cr substrate via cathodic electrodeposition," Phys. Chem. Chem. Phys., vol. 17, no. 47, pp, 31750–31757, 2015, doi: 10.1039/c5cp04723d.
[10]S. Khan, G. Azimi, B. Yildiz & K. K. Varanasi, "Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides," Appl. Phys. Lett., vol. 106, no. 6, 2015, doi: 10.1063/1.4907756.
[11]Y. J. Cho, H. Jang, K. S. Lee & D. R. Kim, "Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity & corrosion resistance," Appl. Surf. Sci., vol. 340, pp, 96–101, 2015, doi: 10.1016/j.apsusc.2015.02.138.
[12]I. K. Oh & et al., "Hydrophobicity of rare earth oxides grown by atomic layer deposition," Chem. Mater., vol. 27, no. 1, pp, 148–156, 2015, doi: 10.1021/cm503659d.
[13] D. J. Preston, N. Miljkovic, J. Sack, R. Enright, J. Queeney & E. N. Wang, "Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics," Appl. Phys. Lett., vol. 105, no. 1, pp, 0–5, 2014, doi: 10.1063/1.4886410.
[14]R. Lundy & et al., "Exploring the Role of Adsorption & Surface State on the Hydrophobicity of Rare Earth Oxides," ACS Appl. Mater. Interfaces, vol. 9, no. 15, pp, 13751–13760, 2017, doi: 10.1021/acsami.7b01515.
[15]E. Külah & et al., "Surface chemistry of rare-earth oxide surfaces at ambient conditions: Reactions with water & hydrocarbons," Sci. Rep., vol. 7, no. March, pp, 1–10, 2017, doi: 10.1038/srep43369.
[16]Y. Cai, T. W. Coyle, G. Azimi & J. Mostaghimi, "Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray," Sci. Rep., vol. 6, pp, 1–7, 2016, doi: 10.1038/srep24670.
[17]J. Tam, G. Palumbo, U. Erb & G. Azimi, "Robust Hydrophobic Rare Earth Oxide Composite Electrodeposits," Adv. Mater. Interfaces, vol. 4, no. 24, pp, 1–11, 2017, doi: 10.1002/admi.201700850.
[18]ا. صفائی، "ایجاد آرایـه های نانوکامپوزیتی ZnO/CeO2 درون کانـال های مونولیت لانـه زنبوری کوردیریتی"، فرآیندهای نوین در مهندسی مواد، دوره،10، شماره، 2، ص 175-167، 1395.
[19]C. E. Castano, M. J. O’Keefe & W. G. Fahrenholtz, "Cerium-based oxide coatings," Curr. Opin. Solid State Mater. Sci., vol. 19, no. 2, pp, 69–76, 2015, doi: 10.1016/j.cossms.2014.11.005.
[20]A. Q. Wang & T. D. Golden, "Anodic Electrodeposition of Cerium Oxide Thin Films I. Formation of Crystalline Thin Films," J. Electrochem. Soc., vol. 150, no. 9, pp, 616–620, 2003, doi: 10.1149/1.1596164.
[21]Y. Hamlaoui, L. Tifouti, C. Remazeilles & F. Pedraza, "Cathodic electrodeposition of cerium based oxides on carbon steel from concentrated cerium nitrate. Part II: Influence of electrodeposition parameters & of the addition of PEG," Mater. Chem. Phys., vol. 120, no. 1, pp, 172–180, 2010, doi: 10.1016/j.matchemphys.2009.10.042.
[22]Y. Hamlaoui & et al., "Cathodic electrodeposition of cerium-based oxides on carbon steel from concentrated cerium nitrate solutions. Part I. Electrochemical & analytical characterisation," Mater. Chem. Phys., vol. 113, no. 2–3, pp, 650–657, 2009, doi: 10.1016/j.matchemphys.2008.08.027.
[23]Y. Zhou & J. A. Switzer, "Growth of cerium(IV) oxide films by the electrochemical generation of base method," J. Alloys Compd., vol. 237, no. 1–2, pp, 1–5, 1996, doi: 10.1016/0925-8388(95)02048-9.
[24]Y. Yang, Y. Yang, X. Du, Y. Chen, Z. Zhang & J. Zhang, "Influences of the main anodic electroplating parameters on cerium oxide films," Appl. Surf. Sci., vol. 305, pp, 330–336, 2014, doi: 10.1016/j.apsusc.2014.03.078.
[25]L. Martínez, E. Román, J. L. De Segovia, S. Poupard, J. Creus & F. Pedraza, "Surface study of cerium oxide based coatings obtained by cathodic electrodeposition on zinc," Appl. Surf. Sci., vol. 257, no. 14, pp, 6202–6207, 2011, doi: 10.1016/j.apsusc.2011.02.033.
[26]L. Yang, X. Pang, G. Fox-Rabinovich, S. Veldhuis, & I. Zhitomirsky, "Electrodeposition of cerium oxide films & composites," Surf. Coatings Technol., vol. 206, no. 1, pp, 1–7, 2011, doi: 10.1016/j.surfcoat.2011.06.029.
[27]B. Bouchaud, J. Balmain, G. Bonnet & F. Pedraza, "Optimizing structural & compositional properties of electrodeposited ceria coatings for enhanced oxidation resistance of a nickel-based superalloy," Appl. Surf. Sci., vol. 268, pp, 218–224, 2013, doi: 10.1016/j.apsusc.2012.12.065.
[28]J. Creus, F. Brezault, C. Rebere & M. Gadouleau, "Synthesis & characterisation of thin cerium oxide coatings elaborated by cathodic electrolytic deposition on steel substrate," Surf. Coatings Technol., vol. 200, no. 14–15, pp, 4636–4645, 2006, doi: 10.1016/j.surfcoat.2005.04.027.
[29]I. Zhitomirsky, "Cathodic electrodeposition of ceramic & organoceramic materials. Fundamental aspects," Advances in Colloid & Interface Science, vol. 97, no. 1–3. pp, 279–317, 2002, doi: 10.1016/S0001-8686(01)00068-9.
[30]A. T. Kuhn & C. Y. Chan, "pH changes at near-electrode surfaces," J. Appl. Electrochem., vol. 13, no. 2, pp, 189–207, 1983, doi: 10.1007/BF00612481.
[31]M. Xue, N. Peng, C. Li, J. Ou, F. Wang & W. Li, "Enhanced superhydrophilicity & thermal stability of ITO surface with patterned ceria coatings," Appl. Surf. Sci., vol. 329, pp, 11–16, 2015, doi: 10.1016/j.apsusc.2014.12.145.
[32]L. Luo & et al., "Investigate interactions of water with mesoporous ceria using in situ VT-DRIFTS," Surf. Sci., vol. 691, no. June 2019, p, 121486, Jan. 2020, doi: 10.1016/j.susc.2019.121486.
[33]G. Carchini, M. García-Melchor, Z. Łodziana & N. López, "Underst&ing & Tuning the Intrinsic Hydrophobicity of Rare-Earth Oxides: A DFT+U Study," ACS Appl. Mater. Interfaces, vol. 8, no. 1, pp, 152–160, 2016, doi: 10.1021/acsami.5b07905.
[34]A. Matin, U. Baig, M. A. Gondal, S. Akhtar & S. M. Zubair, "Superhydrophobic & superoleophilic surfaces prepared by spray-coating of facile synthesized Cerium(IV) oxide nanoparticles for efficient oil/water separation," Appl. Surf. Sci., vol. 462, no. August, pp, 95–104, 2018, doi: 10.1016/j.apsusc.2018.08.104.
[35]V. Sundararajan & et al., "Drosophila melanogaster as an in vivo model to study the potential toxicity of cerium oxide nanoparticles," Appl. Surf. Sci., vol. 490, no. June, pp, 70–80, 2019, doi: 10.1016/j.apsusc.2019.06.017.
[36]E. Nourmohammadi & et al., "Cytotoxic activity of greener synthesis of cerium oxide nanoparticles using carrageenan towards a WEHI 164 cancer cell line," Ceram. Int., vol. 44, no. 16, pp, 19570–19575, 2018, doi: 10.1016/j.ceramint.2018.07.201.
[37]H. M. Marwani, E. M. Bakhsh, S. B. Khan, E. Y. Danish & A. M. Asiri, "Cerium oxide‑cadmium oxide nanomaterial as efficient extractant for yttrium ions," J. Mol. Liq., vol. 269, pp, 252–259, 2018, doi: 10.1016/j.molliq.2018.08.046.
[38]R. Suresh, V. Ponnuswamy & R. Mariappan, "Effect of annealing temperature on the microstructural, optical & electrical properties of CeO 2 nanoparticles by chemical precipitation method," Appl. Surf. Sci., vol. 273, pp, 457–464, 2013, doi: 10.1016/j.apsusc.2013.02.062.
[39]B. H. Solis & et al., "Initial stages of CO2 adsorption on CaO: A combined experimental & computational study," Phys. Chem. Chem. Phys., vol. 19, no. 6, pp, 4231–4242, 2017, doi: 10.1039/c6cp08504k.
[40]Q. Lv & et al., "Transparent & water repellent ceria film grown by atomic layer deposition," Surf. Coatings Technol., vol. 320, pp, 190–195, 2017, doi: 10.1016/j.surfcoat.2017.01.058.
[41]M. Panahi-Kalamuei, S. Alizadeh, M. Mousavi-Kamazani & M. Salavati-Niasari, "Synthesis & characterization of CeO2 nanoparticles via hydrothermal route," J. Ind. Eng. Chem., vol. 21, no. 3, pp, 1301–1305, 2015, doi: 10.1016/j.jiec.2014.05.046.
[42]I. Milenković & et al., "Improving stability of cerium oxide nanoparticles by microbial polysaccharides coating," J. Serbian Chem. Soc., vol. 83, no. 6, pp, 745–757, 2018, doi: 10.2298/JSC171205031M.
[43]S. Prakash & et al., "Intrinsic hydrophilic nature of epitaxial thin-film of rare-earth oxide grown by pulsed laser deposition," Nanoscale, vol. 10, no. 7, pp, 3356–3361, 2018, doi: 10.1039/c7nr06642b.
[44]R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Ind. Eng. Chem., vol. 28, no. 8, pp, 988–994, 1936, doi: 10.1021/ie50320a024.
_||_
[1]Y. Gu et al., "Research progress of biomimetic superhydrophobic surface characteristics, fabrication, & application," Adv. Mech. Eng., vol. 9, no. 12, pp, 1–13, 2017, doi: 10.1177/1687814017746859.
[2]J. Tam, G. Palumbo & U. Erb, "Recent advances in superhydrophobic electrodeposits," Materials (Basel)., vol. 9, no. 3, pp, 1–27, 2016, doi: 10.3390/ma9030151.
[3] ب. بکا، ح. غیور و ف. کریمخانی، "تأثیر ضخامت بذر لایه بر آبگریزی نانومیله های"ZnO ، فرآیندهای نوین در مهندسی مواد، دوره، 9، شماره، 1، ص 221-211، 1394.
[4]G. Azimi, R. Dhiman, H. M. Kwon, A. T. Paxson & K. K. Varanasi, "Hydrophobicity of rare-earth oxide ceramics," Nat. Mater., vol. 12, no. 4, pp, 315–320, 2013, doi: 10.1038/nmat3545.
[5]S. L. Sanjay, B. G. Annaso, S. M. Chavan & S. V. Rajiv, "Recent progress in preparation of superhydrophobic surfaces: a review," J. Surf. Eng. Mater. Adv. Technol., vol. 2, no. April, pp, 76–94, 2012.
[6]K. Nakayama, T. Hiraga, C. Zhu, E. Tsuji, Y. Aoki & H. Habazaki, "Facile preparation of self-healing superhydrophobic CeO 2 surface by electrochemical processes," Appl. Surf. Sci., vol. 423, pp, 968–976, 2017, doi: 10.1016/j.apsusc.2017.07.012.
[7]T. Ishizaki, Y. Masuda & M. Sakamoto, "Corrosion resistance & durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film & fluoroalkylsilane molecules in corrosive NaCl aqueous solution," Langmuir, vol. 27, no. 8, pp, 4780–4788, 2011, doi: 10.1021/la2002783.
[8]A. F. Feil & et al., "Micro & nano-texturization of intermetallic oxide alloys by a single anodization step: Preparation of artificial self-cleaning surfaces," ACS Appl. Mater. Interfaces, vol. 3, no. 10, pp, 3981–3987, 2011, doi: 10.1021/am200854r.
[9]F. Pedraza, S. A. Mahadik & B. Bouchaud, "Synthesis of ceria based superhydrophobic coating on Ni20Cr substrate via cathodic electrodeposition," Phys. Chem. Chem. Phys., vol. 17, no. 47, pp, 31750–31757, 2015, doi: 10.1039/c5cp04723d.
[10]S. Khan, G. Azimi, B. Yildiz & K. K. Varanasi, "Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides," Appl. Phys. Lett., vol. 106, no. 6, 2015, doi: 10.1063/1.4907756.
[11]Y. J. Cho, H. Jang, K. S. Lee & D. R. Kim, "Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity & corrosion resistance," Appl. Surf. Sci., vol. 340, pp, 96–101, 2015, doi: 10.1016/j.apsusc.2015.02.138.
[12]I. K. Oh & et al., "Hydrophobicity of rare earth oxides grown by atomic layer deposition," Chem. Mater., vol. 27, no. 1, pp, 148–156, 2015, doi: 10.1021/cm503659d.
[13] D. J. Preston, N. Miljkovic, J. Sack, R. Enright, J. Queeney & E. N. Wang, "Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics," Appl. Phys. Lett., vol. 105, no. 1, pp, 0–5, 2014, doi: 10.1063/1.4886410.
[14]R. Lundy & et al., "Exploring the Role of Adsorption & Surface State on the Hydrophobicity of Rare Earth Oxides," ACS Appl. Mater. Interfaces, vol. 9, no. 15, pp, 13751–13760, 2017, doi: 10.1021/acsami.7b01515.
[15]E. Külah & et al., "Surface chemistry of rare-earth oxide surfaces at ambient conditions: Reactions with water & hydrocarbons," Sci. Rep., vol. 7, no. March, pp, 1–10, 2017, doi: 10.1038/srep43369.
[16]Y. Cai, T. W. Coyle, G. Azimi & J. Mostaghimi, "Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray," Sci. Rep., vol. 6, pp, 1–7, 2016, doi: 10.1038/srep24670.
[17]J. Tam, G. Palumbo, U. Erb & G. Azimi, "Robust Hydrophobic Rare Earth Oxide Composite Electrodeposits," Adv. Mater. Interfaces, vol. 4, no. 24, pp, 1–11, 2017, doi: 10.1002/admi.201700850.
[18]ا. صفائی، "ایجاد آرایـه های نانوکامپوزیتی ZnO/CeO2 درون کانـال های مونولیت لانـه زنبوری کوردیریتی"، فرآیندهای نوین در مهندسی مواد، دوره،10، شماره، 2، ص 175-167، 1395.
[19]C. E. Castano, M. J. O’Keefe & W. G. Fahrenholtz, "Cerium-based oxide coatings," Curr. Opin. Solid State Mater. Sci., vol. 19, no. 2, pp, 69–76, 2015, doi: 10.1016/j.cossms.2014.11.005.
[20]A. Q. Wang & T. D. Golden, "Anodic Electrodeposition of Cerium Oxide Thin Films I. Formation of Crystalline Thin Films," J. Electrochem. Soc., vol. 150, no. 9, pp, 616–620, 2003, doi: 10.1149/1.1596164.
[21]Y. Hamlaoui, L. Tifouti, C. Remazeilles & F. Pedraza, "Cathodic electrodeposition of cerium based oxides on carbon steel from concentrated cerium nitrate. Part II: Influence of electrodeposition parameters & of the addition of PEG," Mater. Chem. Phys., vol. 120, no. 1, pp, 172–180, 2010, doi: 10.1016/j.matchemphys.2009.10.042.
[22]Y. Hamlaoui & et al., "Cathodic electrodeposition of cerium-based oxides on carbon steel from concentrated cerium nitrate solutions. Part I. Electrochemical & analytical characterisation," Mater. Chem. Phys., vol. 113, no. 2–3, pp, 650–657, 2009, doi: 10.1016/j.matchemphys.2008.08.027.
[23]Y. Zhou & J. A. Switzer, "Growth of cerium(IV) oxide films by the electrochemical generation of base method," J. Alloys Compd., vol. 237, no. 1–2, pp, 1–5, 1996, doi: 10.1016/0925-8388(95)02048-9.
[24]Y. Yang, Y. Yang, X. Du, Y. Chen, Z. Zhang & J. Zhang, "Influences of the main anodic electroplating parameters on cerium oxide films," Appl. Surf. Sci., vol. 305, pp, 330–336, 2014, doi: 10.1016/j.apsusc.2014.03.078.
[25]L. Martínez, E. Román, J. L. De Segovia, S. Poupard, J. Creus & F. Pedraza, "Surface study of cerium oxide based coatings obtained by cathodic electrodeposition on zinc," Appl. Surf. Sci., vol. 257, no. 14, pp, 6202–6207, 2011, doi: 10.1016/j.apsusc.2011.02.033.
[26]L. Yang, X. Pang, G. Fox-Rabinovich, S. Veldhuis, & I. Zhitomirsky, "Electrodeposition of cerium oxide films & composites," Surf. Coatings Technol., vol. 206, no. 1, pp, 1–7, 2011, doi: 10.1016/j.surfcoat.2011.06.029.
[27]B. Bouchaud, J. Balmain, G. Bonnet & F. Pedraza, "Optimizing structural & compositional properties of electrodeposited ceria coatings for enhanced oxidation resistance of a nickel-based superalloy," Appl. Surf. Sci., vol. 268, pp, 218–224, 2013, doi: 10.1016/j.apsusc.2012.12.065.
[28]J. Creus, F. Brezault, C. Rebere & M. Gadouleau, "Synthesis & characterisation of thin cerium oxide coatings elaborated by cathodic electrolytic deposition on steel substrate," Surf. Coatings Technol., vol. 200, no. 14–15, pp, 4636–4645, 2006, doi: 10.1016/j.surfcoat.2005.04.027.
[29]I. Zhitomirsky, "Cathodic electrodeposition of ceramic & organoceramic materials. Fundamental aspects," Advances in Colloid & Interface Science, vol. 97, no. 1–3. pp, 279–317, 2002, doi: 10.1016/S0001-8686(01)00068-9.
[30]A. T. Kuhn & C. Y. Chan, "pH changes at near-electrode surfaces," J. Appl. Electrochem., vol. 13, no. 2, pp, 189–207, 1983, doi: 10.1007/BF00612481.
[31]M. Xue, N. Peng, C. Li, J. Ou, F. Wang & W. Li, "Enhanced superhydrophilicity & thermal stability of ITO surface with patterned ceria coatings," Appl. Surf. Sci., vol. 329, pp, 11–16, 2015, doi: 10.1016/j.apsusc.2014.12.145.
[32]L. Luo & et al., "Investigate interactions of water with mesoporous ceria using in situ VT-DRIFTS," Surf. Sci., vol. 691, no. June 2019, p, 121486, Jan. 2020, doi: 10.1016/j.susc.2019.121486.
[33]G. Carchini, M. García-Melchor, Z. Łodziana & N. López, "Underst&ing & Tuning the Intrinsic Hydrophobicity of Rare-Earth Oxides: A DFT+U Study," ACS Appl. Mater. Interfaces, vol. 8, no. 1, pp, 152–160, 2016, doi: 10.1021/acsami.5b07905.
[34]A. Matin, U. Baig, M. A. Gondal, S. Akhtar & S. M. Zubair, "Superhydrophobic & superoleophilic surfaces prepared by spray-coating of facile synthesized Cerium(IV) oxide nanoparticles for efficient oil/water separation," Appl. Surf. Sci., vol. 462, no. August, pp, 95–104, 2018, doi: 10.1016/j.apsusc.2018.08.104.
[35]V. Sundararajan & et al., "Drosophila melanogaster as an in vivo model to study the potential toxicity of cerium oxide nanoparticles," Appl. Surf. Sci., vol. 490, no. June, pp, 70–80, 2019, doi: 10.1016/j.apsusc.2019.06.017.
[36]E. Nourmohammadi & et al., "Cytotoxic activity of greener synthesis of cerium oxide nanoparticles using carrageenan towards a WEHI 164 cancer cell line," Ceram. Int., vol. 44, no. 16, pp, 19570–19575, 2018, doi: 10.1016/j.ceramint.2018.07.201.
[37]H. M. Marwani, E. M. Bakhsh, S. B. Khan, E. Y. Danish & A. M. Asiri, "Cerium oxide‑cadmium oxide nanomaterial as efficient extractant for yttrium ions," J. Mol. Liq., vol. 269, pp, 252–259, 2018, doi: 10.1016/j.molliq.2018.08.046.
[38]R. Suresh, V. Ponnuswamy & R. Mariappan, "Effect of annealing temperature on the microstructural, optical & electrical properties of CeO 2 nanoparticles by chemical precipitation method," Appl. Surf. Sci., vol. 273, pp, 457–464, 2013, doi: 10.1016/j.apsusc.2013.02.062.
[39]B. H. Solis & et al., "Initial stages of CO2 adsorption on CaO: A combined experimental & computational study," Phys. Chem. Chem. Phys., vol. 19, no. 6, pp, 4231–4242, 2017, doi: 10.1039/c6cp08504k.
[40]Q. Lv & et al., "Transparent & water repellent ceria film grown by atomic layer deposition," Surf. Coatings Technol., vol. 320, pp, 190–195, 2017, doi: 10.1016/j.surfcoat.2017.01.058.
[41]M. Panahi-Kalamuei, S. Alizadeh, M. Mousavi-Kamazani & M. Salavati-Niasari, "Synthesis & characterization of CeO2 nanoparticles via hydrothermal route," J. Ind. Eng. Chem., vol. 21, no. 3, pp, 1301–1305, 2015, doi: 10.1016/j.jiec.2014.05.046.
[42]I. Milenković & et al., "Improving stability of cerium oxide nanoparticles by microbial polysaccharides coating," J. Serbian Chem. Soc., vol. 83, no. 6, pp, 745–757, 2018, doi: 10.2298/JSC171205031M.
[43]S. Prakash & et al., "Intrinsic hydrophilic nature of epitaxial thin-film of rare-earth oxide grown by pulsed laser deposition," Nanoscale, vol. 10, no. 7, pp, 3356–3361, 2018, doi: 10.1039/c7nr06642b.
[44]R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Ind. Eng. Chem., vol. 28, no. 8, pp, 988–994, 1936, doi: 10.1021/ie50320a024.