سنتز، شناسایی و کاربرد نانوکامپوزیت پلیآکریلآمید-پلیاستایرن/بنتونیت بهمنظور جذب سرب و کادمیم از آب آلوده
محورهای موضوعی : سنتز موادامیر ابراهیم برادران مهدوی 1 , ابراهیم پناهپور 2 * , روزبه جواد کلباسی 3 , علی غلامی 4
1 - دانشجوی دکتری خاکشناسی، پردیس علوم و تحقیقات خوزستان، دانشگاه آزاد اسلامی، اهواز، ایران
گروه خاکشناسی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
2 - گروه خاکشناسی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
3 - عضو هیأت علمی گروه شیمی، دانشگاه خوارزمی، تهران، ایران.
4 - گروه خاکشناسی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
کلید واژه: سرب, پلیآکریلآمید, بنتونیت, کادمیوم, محیطهای آبی,
چکیده مقاله :
در طی دهه اخیر ساخت و کاربرد جاذبهای مختلف عناصر سنگین از محیط بسیار مورد توجه میباشد، در این میان نانوکامپوزیتها بواسطهی داشتن سطح ویژه و تخلخل بالا، قادر به حذف مقادیر نسبتاً زیادی از این گونه آلایندهها از محیطهای آبی میباشند. در این تحقیق نانوکامپوزیت پلیآکریلآمید-پلیاستایرن/بنتونیت سنتز، شناسایی و مورد استفاده قرار گرفت. اثر شرایط تاثیرگذار بر جذب شامل: pH، نسبت بنتونیت به پلیآکریلآمید، میزان جاذب، زمان تماس، غلظت کاتیون و سینتیک عمل جذب مورد تحلیل و بررسی َقرار گرفت. ساختار نانوکامپوزیت با روشهای TEM، BET، ، FT-IR و XRD شناسایی شد. میزان جذب سرب و کادمیم بوسیله دستگاه جذب اتمی مورد سنجش قرار گرفت. نتایج بررسیهای ریز ساختاری نشان داد نانوکامپوزیت پلیآکریلآمید-پلیاستایرن/بنتونیت از نظر فاصله لایهها و سطح تماس، نسبت به بنتونیت افزایش چشمگیری داشته است. چنین ساختاری در شرایط بهینه افزایش نسبتاً زیادی از جذب آلایندههای کاتیونی سرب و کادمیم را نسبت به جاذبهای بنتونیت و پلیآکریلآمید نشان میدهد. همچنین نتایج بررسیها نشان داد که بیشترین مقدار جذب در 6=pH، بهترین نسبت بنتونیت به پلیآکریلآمید 5/2 :5، مقدار بهینه جاذب برابر با 5 گرم بر لیتر، مدت زمان تماس برابر با 12 ساعت و بیشترین جذب فلزات در غلظت 150 میلیگرم بر لیتر بدست آمد.
During last decade, the construction and application of various adsorbents of heavy metals have been interested by many researchers. Nanocomposites with high surface areaandporosity can remove large amount of these contaminants from aques media. In this research, nanocomposites of polyacrylamide-polystyrene/bentonite synthesized,and identified. The effective parameters effective on adsorption Cd+2,Pb+2 cations including pH, Bentonite / Polyacrylamide ratio, adsorption rate, time contact, cationic and cationic activity of adsorption activity were illustrated. The structure of nanocomposites was carried out by TEM, BET, FT-IR and XRD methods. The rates of lead and cadmium adsorption were measured by atomic absorption. The results of microstructural investigations showed that in polyacrylamide-polystyrene/bentonite nanocomposite the interlayer distance in crystal structure and specific surface increased significantly in comparison with the modified bentonite. Also, the results approved that the highest adsorption at pH = 6, the best ratio of bentonite to polyacramide 2. 5: 5, the optimum absorbance was 5 g / l, the duration of the call was 12 hours, and the highest metal adsorption at 150 mg /l concentration.
[1] K. Jlassi, M. Benna-Zayan, S. Thomas & M. M. Chehimi, “Clay/polyaniline hybrid through diazonium chemistry: Conductive nanofiller with unusual effects oninterfacial properties of epoxy nanocompositesˮ, Langmuir, Vol. 32, pp. 3514-3524, 2016.
[2] K. Jlassi, R. Abidi, M. Benna, M. M. Chehimi, P. Kasak & I. Krupa, “Bentonite-decorated calix [4] arene: A new, promising hybrid material for heavy-metal removalˮ, Applied Clay Science, Vol. 161, pp. 15-22, 2018.
[3] D. H. Park, S. J. Hwang, J. M. Oh, J. H. Yang & J. H. Choy, “Polymer–inorganic supramolecular nan hybrids for red, white, green, and blue applicationsˮ, Progress in Polymer Science, Vol. 38, pp. 1442-1486, 2013.
[4] J. A. Gonza´lez, M. E. Villanueva, L. L. Piehl & G. J. Copello, “Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: adsorption and desorption studyˮ, Chem. Eng. J., Vol. 280, pp. 41-48, 2015.
[5] R. J. Kalbasi, A. A. Nourbaksh, M. Zia, “Aerobie oxidation of alcohols catalyzed by copper nanopaticle-polyacrylamide/SBA-15 as novel polymer-inorganic hybridˮ, J, Jnorg, Organoment, Polym, Vol. 22, pp. 536-542, 2012.
[6] P. C. Nagajyoit, D. K. Lee & T. V. M. Sreekanth, “Heavy metals Occurrence and toxicity for plantsˮ, Envrion. Chem. Lett, Vol. 8, pp. 199-216, 2010.
[7] C. M. Futalan, W. C. Tsai, S. S. Lin, K. J. Hsien, M. L. Dalida & M. L. Wan, “Copper,nickel and lead adsorption from aqueous solution using chitosan-immobilized on bentonite in a ternary systemˮ, Sustain. Environ. Res, Vol. 22, No. 6, pp. 345-355, 2012.
[8] A. Rais & M. Anam, “Heavy metal remediation by Dextrin-oxalic acid/Cetyl. trimethyl. ammonium. bromide(CTAB). Montmorillonite(MMT). nanocompositeˮ, Groundwater for Sustainable Development, No. 4, pp. 57-65, 2017.
[9] E. NazarzadehZare, A. Motahari & M. Sillanpaa, “Nano adsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyesˮ, Environmental Research, Vol. 162, pp. 173-195, 2018.
[10] A. Afzali & M. Fayazi, “Deposition of MnO2 nanoparticles on the magnetic halloysite nanotubes by hydrothermal method for lead(II) removal from aqueous solutionsˮ, Journal of the Taiwan Institute of Chemical Engineers, Vol. 63, pp. 421-429, 2016.
[11] A. Khan, A. M. Asiri, M. A. Rub, N. Azum, A. A. P. Khan, S. B. Khan, M. M. Rahman & I. Khan, “Synthesis, characterization of silver nanoparticle embedded polyaniline tungstophosphate-nanocomposite cation exchanger and its application for heavy metal selective membraneˮ, Composites, Part B. Vol. 45, pp. 1486-1492, 2013.
[12] M. Lium, Z. Chen, S. Yu, D. Wu & C. Gao, “Thin- film composite polyamide reverse osmosis membranes with improved acid stability and chlorine resistance by coating N-Isopropylamide – Co - acrylamid copolymersˮ, Desalination, Vol. 270, pp. 248-257, 2011.
[13] F. Sabeti Dehkordi, M. Pakizeh & M. Namvar-Mahboub, “Properties and ultrafiltration efficiency of cellulose acetate/organically modified Mt (CA/OMMt) nanocomposite membrane for humic acid removalˮ, Applied Clay Science, Vol. 105-106, pp. 178-185, 2015.
[14] G. Xue-jun, W. Zhi-jun & H. Meng-chang, “Removal of antimony (V) and antimony (III) from drinking water by coagulationflocculation-sedimentationˮ, (CFS) [J], Water Research, Vol. 43, pp, 4327−4335, 2009.
[15] B. Hayati, A. Maleki, F. Najafi, F. Gharibi, G. McKay, V. Kumar Gupta, S. Harikaranahall Puttaiah & N. Marzban, “Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systemsˮ, Chemical Engineering Journal, Vol. 346, pp. 258-270, 2018.
[16] Y. Ma, L. Lv, Y. Guo, Y. Fu & Z. Guo, “Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: Swelling behaviors and rapid removal of Pb (II) ionsˮ, Polymer, Vol. 128, pp. 12-23, 2017.
[17] B. Anna, M. Kleopas, S. Constantine, F. Anestis & B. Maria, “Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto Natural Bentonite: Study in Mono-and Multi-Metal Systemsˮ, Environ. Earth Sci, Vol. 73, pp. 5435-5444, 2015.
[18] M. Ebitasem, A. Saad, A. El-Khatib, M. Soliman & E. Allam, “Layer-by-layer assembly and functionalization of nanobentonite with nanopolyaniline and oleic acid to remove divalent Zn, Co,65Zn, and 60Co from water and radioactive wastewaterˮ, Ecotoxicology and Environmental Safety, Vol. 145, pp. 665-673, 2017.
[19] F. Gode & E. Pehlivan, “Removal of chromium (III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperatureˮ, J. Hazard. Mater, Vol. 136, pp. 330-337, 2006.
[20] A. Shyaa, O. Hasan & A. Abbas, “Synthesis and characterization of polyaniline/zeolite nanocomposite for the removal of chromium(VI) from aqueous solutionˮ, Journal of Saudi Chemical Society, Vol. 19, pp. 101-107, 2015.
[21] A. Babarinde & G. O. Onyiaocha, “Equilibrium Sorption of Divalent Metal Ions onto Groundnut (Arachishypogaea) Shell: Kinetics, Isotherm and Thermodynamicsˮ, Chem. Int., Vol. 2, pp. 37-46, 2016.
[22] Buhani, Suharso & Sumadi, “Adsorption kinetics and isotherm of Cd(II) ion on Nannochloropsissp biomass imprinted ionic polymerˮ, Desalination, Vol. 259, pp. 140-146, 2010.
[23] L. Zhironga, A. Uddinb & S. Zhanxuea, “FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentoniteˮ, SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, Vol. 79, pp. 1013-1016, 2011.
[24] V. Kumar Gupta, D. Gupta, S. Agarwal, N. C. Kothiyal & D. Pathania, “Fabrication of chitosan-g-poly(acrylamide)/Cu nanocomposite for the removal of Pb(II) from aqueous solutionsˮ, Journal of Molecular Liquids, part B, Vol. 224, pp. 1319-1325, 2016.
[25] G. Wang, Y. Hua, X. Su, S. Komarneni & Y. Wang, “Cr(VI) adsorption by montmorillonite nanocompositesˮ, Applied Clay Science, Vol. 124, pp. 111-118, 2016.
[26] K. Foo & B. Hameed, “Insights into the Modeling of Adsorption Isotherm Systemsˮ, Chem. Eng., J., Vol. 156, pp. 2-10, 2010.
[27] R. Bushra, M. Naushad, R. Adnan, Z. A. Alothman & M Rafatullah “Polyaniline supported nanocomposite cation exchanger: Synthesis, characterization and applications for the efficient removal of Pb+2ion from aqueous mediumˮ, Vol. 21, pp. 1112-1118, 2015.
[28] H. Bai, Q. Zhang, T. He, G. Zheng, G. Zhang, L. Zheng & S. Ma, “Adsorption dynamics, diffusion and isotherm models of poly(NIPAm/LMSH) nanocomposite hydrogels for the removal of anionic dye Amaranth from an aqueousˮ, Applied ClayScience, No. 124-125, pp. 157-166, 2016.
[29] M. Ebitasem, A. Saad, A. El-Khatib, M. Soliman & E. Allam, “Layer-by-layer assembly and functionalization of nan bentonite with nan polyaniline and oleic acid to remove divalent Zn, Co,65Zn, and 60Co from water and radioactive wastewaterˮ, Ecotoxicology and Environmental Safety, Vol. 145, pp. 665-673, 2017.
[30] F. Gode & E. Pehlivan, “Removal of chromium (III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperatureˮ, J. Hazard. Mater, Vol. 136, pp. 330-337, 2006.
[31] A. Shyaa, O. Hasan & A. Abbas, “Synthesis and characterization of polyaniline/zeolite nanocomposite for the removal of chromium(VI) from aqueous solutionˮ, Journal of Saudi Chemical Society, Vol. 19, pp. 101-107, 2015.
[32] R. Rostamina, M. Najafi & A. A. Rafati, “Synthesis and characterization of thiol-functionalized silica nano hollow sphere as a novel adsorbent for removal of poisonous heavy metal ions water: Kineties, isotherms and crror analysisˮ, Chem. Eng. J, Vol. 171, pp. 1004-1011, 2011.
[33] C. Shu, C. Chiew, H. K. Yeoh, P. Pasbakhsh, K. Krishnaiah, P. E. Poh, B. T. Tey & S. E. Chan, “Halloysite/alginate nanocomposite beads: Kinetics, equilibrium and mechanism for lead adsorptionˮ, Applied Clay Science, Vol. 119, pp. 301-310, 2016.
[34] B. M. Nagabhushana & H. Nagabhushana, “Adsorption of Hazardous Cationic Dye onto the Combustion Derived SrTiO3 Nanoparticles: Kinetic and Isotherm Studiesˮ, J. Asian Ceramic Soc., Vol. 4, pp. 68-74, 2016.
_||_