ساخت نانوالیاف هسته–پوسته اکسیدی به روش الکتروریسی یک مرحله ای
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدحجت رفیعی پور 1 * , محمد رضا واعظی 2 , اصغر کاظم زاده 3
1 - پژوهشگاه مواد و انرژی
2 - پژوهشگاه مواد وانرژی
3 - پژوهشگاه مواد و انرژی
کلید واژه: "الکترو ریسی", "نانوالیاف هسته – پوسته", "دی اکسید قلع", "اکسید روی",
چکیده مقاله :
چکیده در این مقاله برای سنتز نانو الیاف هسته – پوسته (اکسید قلع – اکسید روی)، از روش الکتروریسی یک مرحله ای استفاده شد. برای نیل به این هدف سوزن هم محور ساخته شده و پیش ماده های اکسیدی (کلرید قلع و استات روی) را در محلول آبی پلی وینیل الکل(PVA) حل نموده و توسط یک پمپ سرنگ دوتایی تزریق شدند. عملیات کلسینه نمودن، بر روی نانو الیاف هسته – پوسته سنتز شده صورت گرفت. مورفولوژی و ریز ساختار نانو الیاف با استفاده از میکروسکوپ الکترونی روبشی نشر میدانی (FE-SEM) ، میکروسکوپ الکترونی عبوری (TEM) و طیف سنجی انرژی اشعه ایکس(EDS) و پراش پرتو ایکس (XRD)شناسایی شدند. ساختار نهایی، شامل هسته SnO2 و پوسته ZnO میباشد. قطر هسته نانو لیف nm 45و ضخامت پوسته nm 25 میباشد. قطر متوسط نانو الیاف هسته – پوسته کلسینه نشده و کلسینه شده به ترتیب 175و nm79 میباشد.
In this paper, core - shell nanofibers were synthesized by single stage electrospinning. To achieve on this aim, a coaxial needle was used, and oxides precursor were solved in polyvinyl alcohol (PVA) solution, and injected by separate syringes which connected to one pump. Calcination was done on synthsised core – shell nanofibers. The morphology and microstructure of nanofibers were examined by field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The final structure is ZnO as shell and SnO2 as core. The core diameter and the shell thickness nanofiber from TEM image are approximately 45 nm and 25 nm, respectively. The average diameters of as-electrospun and calcined core - shell nanofibers are about 175 and 79 nm, respectively.
[1] F. Barzegar, A. Bello, M. Fabiane, S. Khamlich, D. Momodu, F. Taghizadeh, J. Dangbegnon & N. Manyala, “Preparation and characterization of poly(vinyl alcohol)/graphene nanofibers synthesized by electrospinning”, J. Physics and Chemistry of Solids, Vol.77, pp. 139-145, 2015.
[2] R. A. Kadir, Z. Li, A. Z. Sadek, R. A. Rani, A. S. Zoolfakar, M. R. Field, J. Z. Ou, A. F. Chrimes & K. Kalantarzadeh, “Electrospun Granular Hollow SnO2 Nanofibers Hydrogen Gas Sensors Operating at Low Temperatures”, The J. Physical Chemistry C, pp. 3129-3139, 2014.
[3] H. Wu, W. Pan, D. Lin & H. Li, “Electrospinning of ceramic nanofibers: Fabrication, assembly and applications”, Advanced Ceramics, Vol. 1, No. 1, pp. 2-23, 2012.
[4] H. A. Khorami, M. Keyanpour-Rad & M. R. Vaezi “Synthesis of SnO2/ZnO composite nanofibers by electrospinning method and study of its ethanol sensing properties”, Applied Surface Science, Vol. 257, pp. 7988-7992, 2011.
[5] I. S. Hwang, S. J. Kim, J. K Choi, J. Choi, H. Ji, G. T. Kim, G. Cao & J. H. Lee, “Synthesis and gas sensing characteristics of highly crystalline ZnO–SnO2 core–shell nanowires”, Sensors and Actuators, Vol. 148B, pp. 595-600, 2010.
[6] A. Kumar, “Nanofibers”, Chapter 22, Intech, Olajnica 19/2, 32000 Vukovar, Croatia, published in India, 2010.
[7] J. Y. Park, S. W. Choi, J. W. Lee, Chongmu Lee, & S. S. Kim, “Synthesis and Gas Sensing Properties of TiO2–ZnO Core-Shell Nanofibers”, J. Am. Ceram. Soc, Vol. 92, No. 11, pp. 2551-2554, 2009.
[8] J. Huang & Q. Wan, “Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures”, Vol. 9, pp. 9903-9924, 2009.
[9] A. L. Andrady, “Science and Technology of Polymer Nanofibers”, John Wiley & Sons, Inc, 2008.
[10] P. J. Brown & K. Stevens, “Nanofibers and nanotechnology in textiles”, Cambridge, England: Woodhead Publishing Limited, 2007.
[11] S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim & Z. Ma, “An Introduction to Electrospinning and Nanofibers”, World Scientific, Singapore, 2005.
[12] Y. Ganjkhanlou, A. B. Moghaddam, S. Hosseini, T. Nazari, A. Gazmeh & J. Badraghi, “Application of Image Analysis in the Characterization of Electrospun Nanofibers”, Iran. J. Chemical and Chemical Eng, Vol. 33, pp. 37-45, 2014.
[13] R. J. Wade & J. A. Burdick, “Advances in nanofibrous scaffolds for biomedical applications: From electrospinning to self-assembly”, Nano today, Vol. 9, pp. 722-742, 2014.
[14] A. K. Moghe & B. S. Gupta, “Co-axial Electrospinning for Nanofiber Structures: Preparation and Applications”, Taylor & Francis Group, LLC Polymer Reviews, Vol. 48, pp. 353-377, 2008.
[15] J. Y. Park, S. W. Choi, S. S. Kim. ”A model for the enhancement of gas sensing properties in SnO2–ZnO core–shell nanofibres”, J. Phys. D: Appl. Phys. 44, pp. 1-4, 2011.
[16] K. Asokan, J. Y. Park, S. W. Choi & S. S. Kim, “Nanocomposite ZnO–SnO2 Nanofibers Synthesized by Electrospinning Method”, Nanoscale Res Lett, Vol. 5, pp. 747-752, 2010.
[17] N. Bhardwaj & S. C. Kundu, “Electrospinning: A fascinating fiber fabrication technique”, Biotechnology Advances, Vol. 28, pp. 325-347, 2010.
[18] S. W. Choi, J. Y. Park & S. S. Kim, “Synthesis of SnO2–ZnO core–shell nanofibers via a novel two-step process and their gas sensing properties”, Nanotechnology, Vol. 20, pp. 1-6, 2009.
[19] J. Y. Park & S. S.Kim, “Growth of Nanograins in Electrospun ZnO Nanofibers”, J. Am. Ceram. Soc, Vol. 92, No. 8, pp. 1691-1694, 2009.
[20] A. Frenot & I. S. Chronakis, “Polymer nanofibers assembled by electrospinning”, Current Opinion in Colloid & Interface Science, Vol. 8, pp. 64-75, 2003.
[21] H. T. Zhuo, J. L. Hu & S. J. Chen, “Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials”, eXPRESS Polymer Letters, Vol. 5, pp. 182-187, 2011.
[22] B. S. Lee, S. B. Son, K. M. Park, J. H. Seo, S. H. Lee, In-Suk Choi, K. H. Oh & W. R. Yu, “Fabrication of Si core/C shell nanofibers and their electrochemical performances as lithium-ion battery anode” Journal of Power a Sources, Vol.206, pp. 267-273, 2012.
[23] W. Li, S. Ma, Y. Li, G. Yang, Y. Mao, J. Luo, D. Gengzang, X. Xu & S. Yan, “Enhanced ethanol sensing performance of hollow ZnO–SnO2 core–shell nanofibers”, Sensors and Actuators, Vol. 211B, pp. 392-402, 2015.
[24] K. Y. Pan, Y. H. Lin, P. S. Lee, J. M. Wu & H. C. Shih, “Synthesis of SnO2-ZnO Core-Shell Nanowires and Their Optoelectronic Properties”, Nanomaterials, 1-6, 2012.
[25] D. H. Reneker & A.L. Yarin, “Electrospinning jets and polymer nanofibers”, Polymer, Vol. 49, pp. 2387-2425, 2008.
[26] ت. احمدی، ا. منشی، و. مرتضوی، م. ح. فتحی و ب. هاشمی، "ساخت و مشخصه یابی غشای پلی کاپرولاکتون فومارات-ژلاتین الکتروریسی شده برای کاربردبازسازی هدایت شدهی بافت پریودنتال" فرآیندهای نوین در مهندسی مواد، سال نهم، پاییز 1394.
[27] Y. Q. Wan, Q. Guo & Ning Pan, “Thermo-electro-hydrodynamic model for electrospinning process”,International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 5, No. 1, pp. 5-8, 2004.
[28] ا. نکوبین و م. خدیوی، "بررسی و مطالعه عملکرد سنسور گازی ساخته شده از پوشش نانواکسید روی" فرآیندهای نوین در مهندسی مواد، سال هفتم، پاییز 1392.
[29] E. Nikan, A. A. Khodadadi & Y. Mortazavi, “Highly enhanced response and selectivity of electrospun ZnO-doped SnO2sensors to ethanol and CO in presence of CH4”, Sensors and Actuators, Vol. 184B, pp. 196-204, 2013.
_||_