تولید نانو ذرات فریت مس منگنز دوپه شده با کادمیم به روش هم رسوبی و بررسی خواص حسگری آن به منظور تشخیص گاز متان در مراکز مخابرات
محورهای موضوعی : سنتز موادحسین امامی 1 * , سید محسن اعتصامی 2
1 - عضو هیات علمی دانشگاه آزاد اسلامی، واحد شهر مجلسی
2 - دانشجو
کلید واژه: متان, حساسیت پذیری, نانو ذرات فریت مس منگنزدوپه شده با کادمیم, پرتو ایکس,
چکیده مقاله :
در این مطالعه، به تولید نانو ذرات فریت مس منگنز دوپه شده با کادمیم و بررسی حساسیت آنها پرداخته شده است. روش به کار رفته برای ساخت نانو حساسه روش همرسوبی است که برای این ترکیب روش جدیدی است. برای بررسی ساختار این نانو حساسه از آزمایشاتی نظیر پراش پرتو ایکس (XRD)که تک فاز بودن ترکیب و نانو بودن آن را نشان میدهد؛ وآزمایش میکروسکوپ الکترونی عبوری (TEM)که اندازه نانو ذرات را مشخص کرده (کمتر از 50 نانومتر) و همین طور یکنواختی آنها را نمایش میدهد، استفاده شده است. برای آزمون حساسیت پذیری این نانو حساسه از یک دستگاه آزمایشگاهی با قابلیت کنترل دما بهره برده شد که مجهز به یک گرم کن حساسه با کنترل دما بوده و حساسه روی آن قرار میگیرد و یک محفظه برای تزریق گونههای مورد آزمایش، و یک برد الکترونیکی رابط که اطلاعات نانوحساسه را به سیستم رایانه انتقال و توسط نرم افزار مربوطه مورد تجزیه و تحلیل قرار میگیرد. در مورد این نانو حساسه که باگاز متان موردآزمایش قرار گرفت؛ حساسیت پذیری دما مناسب برای پاسخ این نانو حساسه 300 درجه سانتیگراد بود.
In this study, synthesis and studying sensitivity of nano particles of manganese copper ferrite with common formula of cupper manganese ferrite cadmium doped has been considered. Applied method for manufacturing this nanoparticle is co-precipitation method that is a novel method for this combination. Nano particle structure has been investigated using experiments such as X-ray diffraction which showed single–phase and Nano characteristics of this combination and scanning electron microscope which showed the size of nanoparticles and uniformity. Sensitivity of the nano particles was tested using a laboratory system equipped with sensor heater with the ability of temperature control on which nano sensor was put, a chamber for injecting related materials and a connector electronic range that transferred Nano-sensor information to computer and it was analyzed by a software. This system could control temperature. This Nano sensor was tested using Methane that sensitivity and suitable temperature for this Nano sensor was 300˚C.
[1] ع. حیدری مقدم، ح. یوزباشی زاده، و. دشتی زاد و ع. کفلو، "سنتز ترکیبی بین فلزی نانوساختار Zr3Co با خاصیت جذب بالا به روش آلیاژسازی مکانیکی"، فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 3، صفحه 40-25، پاییز 1394.
[2] م. محمودی و م. کاوانلویی، "بهبود ریزساختار و خواص مغناطیسی فریت های لیتیم تولید شده به روش حالت جامد بوسیله افزودنی نانوسیلیکا"، فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 3، صفحه 199-204، پاییز 1394.
[3] ه. گلپایگانی، ع. بیت اللهی و م. نیایی فر، "بررسی مقایسه ای تحولات فازی و خواص مغناطیسی نانو ذرات سیستم Co/a-Fe2O3 سنتز شده به روش آلیاژسازی مکانیکی با نسبت های مولی متفاوت"، فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 3، صفحه 27-34، پاییز 1387.
[4] Y. Z. Xiaoyan Tan, G. Li & Ch. Hu, “Effect of calcination temperature on the structure and hydroxylation activity of Ni0.5Cu0.5Fe2O4 nanoparticlesˮ, Applied Surface Science, Vol. 257, pp. 6256–6263, 2011.
[5] A. D. Wilson & M. Baietto, “Applications and advances in electronic-nose technologiesˮ, Sensors, Vol. 9, pp. 50, 2009.
[6] F. Toshio, “Keynote speaker I: Cell analysis and assembly by micro and nano robotics systemˮ, in Region 10Symposium, Vol. 10, pp. 1-5, 2014.
[7] S., Ayşin & M. Ezel, “Nanotechnology innovations for the sustainable buildings of the futureˮ, World Academy of Science, Engineering and TechnologyInternational, Journal of Architectural and Environmental Engineering Vol. 8, No. 8, 2014.
[8] R. D. Ladhe, K. V. Gurav, S. M. Pawar, J. H. Kim & B. R. Sankapal, “P-PEDOT: PSS as a heterojunction partner with n-ZnO for detection of LPG at room temperatureˮ, Journal of Alloys and Compounds, Vol. 515, No. 80-85, pp. 5015, 2012.
[9] M. M. Rahman, G. Gruner, M. S. Al-Ghamdi, M. S. Daous, S. Bahadar Khan & A. M. Asiri, “Chemo-sensors development based on low-dimensional codoped Mn2O3-ZnO nanoparticles using flat-silver electrodesˮ, Chemistry Central Journal, Vol. 7, No. 60, 2013. doi: 10.1186/1752-153X-7-60
[10] S Singh, N. Verma, B. C. Yadav & R. Prakash, “A comparative study on surface morphological investigations of ferric oxide for LPG and opto-electronic humidity sensorsˮ, Surface Science,Vol. 258, No, 22, pp. 8780-8789, 2012.
[11] B. C. Yadav, S. Singh & A. Yadav, “Nanonails structured ferric oxide thick film as room temperature liquefied petroleum gas (LPG) sensorˮ, Surface Science, Vol. 257, pp. 1960-1966, 2011.
[12] K. Winiarska, I. Szczygieł R. Klimkiewicz, “Manganese–zinc ferrite synthesis by the sol–gel autocombustion method. Effect of the precursor on the Ferrite’s catalytic propertiesˮ, American Chemical Society, Vol. 52, No. 1, pp. 353-361, 2013.
[13] R. B. Kamble & V. L. Mathe, “Nanocrystalline nickel ferrite thick film as an efficient gas sensor at room temperatureˮ, Sensors and Actuators B, Vol. 131, pp. 205-209, 2008.
[14] S. Zhipeng, L. Lang, J. Dian zeng & P. Weiyu, “Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materialsˮ, Sensors and Actuators B, Vol. 125, pp. 144-148, 2007.
[15] S. S. Joshi, C. D. Lokhande & H. H. Sung, “A room temperature liquefied petroleum gas sensor based on all-electrodeposited n-CdSe/p-polyaniline junctionˮ, Sensors and Actuators B, Vol. 123, pp. 240-245, 2007.
[16] I. Polaert, S. Bastien, B. Legras, L. Estel & N. Braidy, “Dielectric and magnetic properties of NiFe2O4at 2.45GHz and heating capacity for potential uses under microwavesˮ, Journal of Magnetism and Magnetic Materials, pp. 731-739, 2015.
[17] H. Meixner, J. Wiley & Sons, “Micro-and Nanosensor Technology: Trends in Sensor Marketsˮ, Sensors, Vol. 8, No. 1, 2008.
[18] M. K. Jaiswal, D. Mrinmoy, S. S. Chou, S. Vasavada, R. Bleher, P. V. Prasad, D. Bahadur & V. P. Dravid, “Thermoresponsive magnetic hydrogels as theranostic nanoconstructsˮ, American Chemical Society, Vol. 6, pp. 6237-6247, 2014.
[19] S. Balasubramaniam, S. Kayandan, Y. N. Lin, D. F. Kelly, W. C. Robert, S. G. Timothy & M. J. House, “Toward design of magnetic nanoparticle clusters stabilized by biocompatible diblock copolymers for T2-weighted MRI contrastˮ, American Chemical Society, Vol. 30, No. 6, pp. 1580-1587, 2014.
[20] R. V. Roosbroeck, W. V. Roy, T. Stakenb, J. Trekker, A. D. Hollander, T. Dresselaer, J. Lammertyn & L. Lagae, “Synthetic antiferromagnetic nanoparticles as potential contrast agents in MRIˮ, American Chemical Society, Vol. 8, pp. 2269-2278, 2014.
[21] M. K. Jaiswal, M. De, S. S. Chou, S. Vasavada, R. Bleher, P. V. Prasad, D. Bahadur & V. P. Dravid, “Thermoresponsive magnetic hydrogels as theranostic nanoconstructsˮ, American Chemical Society, Vol. 6, No. 9, pp. 6237-6247, 2014.
[22] A. B. Gadkari1, T. J. Shinde & P. N. Vasambekar, “Liquid petrolium gas sensor based on nanocrystallite Mg0.6Cd0.4Fe2O4ˮ Advanced Materials Letters, Vol. 4, pp. 573-576, 2013.
[23] A. Jain, R. K. Baranwal, A. Bharti, Z. Vakil & C. S. Prajapati, “Study of Zn-Cu ferrite nanoparticles for LPG sensingˮ, The Scientific World Journal, Article ID 790359, 2013.
_||_