مورفولوژی سطح شکست و ارتباط آن با چقرمگی/انعطاف پذیری در شیشه فلز حجمی آلیاژ Zr46(Cu4.5/5.5Ag1/5.5)46Al8
محورهای موضوعی : عملیات حرارتی
1 - دانشکده مهندسی و علم مواد- دانشگاه صنعتی شریف- تهران- ایران
کلید واژه: انعطاف پذیری, چقرمگی شکست, شیشه فلز حجمی, مورفولوژی سطح شکست, ناپایداری انحنای جریان,
چکیده مقاله :
هدف از این پژوهش بررسی رفتار شکست و پدیدهی تبدیل نرمی به تردی در یک شیشهفلز حجمی آلیاژ پایهی زیرکونیم است. همچنین به-طور خاص ارتباط بین مورفولوژیهای سطح شکست و چقرمگی و انعطافپذیری بررسی شده است. به همین منظور با استفاده از فرآیند ذوب قوسی و ریختهگری مکشی در خلأ، آلیاژ آمورف تولید و در نرخ mm/min 2/0 و دماهای 77 و 298 کلوین تحت آزمون خمش سه-نقطهای قرار گرفت. سطوح شکست به کمک SEM مورد مطالعه و ارزیابی قرار گرفتند و با استفاده از مدل ناپایداری انحنای جریان، ضمن تعیین چقرمگی آلیاژ مورد مطالعه از طریق محاسبهی اندازهی مورفولوژی سطح شکست، ساز و کار شکست ترد و نرم بررسی شد. در ادامه، شرایط و دلایل تشکیل مورفولوژیهای مختلف در این دو حالت بهصورت کمّی تعیین گردید. نتایج نشان میدهد که آلیاژ پایهی زیرکونیم علیرغم نرم بودن در دمای اتاق، در دماهای بسیار پایین (77 کلوین) بهشدت ترد و بیانگر رفتار تبدیل نرمی به تردی است. تحت این شرایط میزان متوسط چقرمگی شکست از حدود MPa.m1/2 16 در دمای اتاق به حدود MPa.m1/2 5/3 در دمای 77 کلوین کاهش یافت. همچنین با کمک مدل ناپایداری انحنای جریان و اطلاعات سطح شکست، طول موج اعوجاج بحرانی (λc) برای این آلیاژ nm 127 محاسبه شد. درصورتی که طول موج اعوجاج اولیه (λI) کمتر از این مقدار بحرانی باشد، مشخصهی سطح شکست به صورت نانو شیارهای موازی و متناوب خواهد بود. در صورتی که λI بزرگتر از مقدار بحرانی باشد شرایط برای تشکیل طرح دیمپل و طرح رگهای فراهم خواهد شد.
In this research, the fracture behavior and ductile to brittle transition (DBT) phenomenon, as well as the correlation between fracture surface morphologies and ductility/toughness in a Zr-based bulk metallic glass (BMG) is investigated. The amorphous alloy was produced by arc melting pure elements and suction casting into a water-cooled copper mold. Then, the three point bending test was used at two temperatures of 77 and 298 K and displacement rate of 0.2 mm/min. Fracture surfaces were observed through scanning electron microscopy after bending tests. The fracture toughness of samples is determined by measuring the size of fracture surface morphologies, and the brittle and ductile fracture mechanisms were theoretically studied by using the fluid meniscus instability model. Although the Zr-based BMG is nearly ductile at room temperature, at very low temperature (77 K) it becomes more brittle. Results show that the mean fracture toughness changes from ~16 MPa.m1/2 at 298 K to ~3.5 MPa.m1/2 at 77 K. Furthermore, the critical wavelength of meniscus instability (λc) is calculated to be 127 nm for the present alloy. According to the results, if the initial wavelength of meniscus instability (λI) is smaller than the λc, periodic nano-corrugation morphologies can be observed on the fracture surface. On the contrary, if λI is larger than λc, the dimples or vein-like patterns are more likely to be form on the fracture surface.
[1] C. A. Schuh, T. C. Hufnagel & U. Ramamurty, “Mechanical behavior of amorphous alloys”, Acta Mater., Vol. 55, No. 12, pp. 4067–4109, 2007.
[2] M. F. Ashby & A. L. Greer, “Metallic glasses as structural materials”, Scr. Mater., Vol. 54, No. 3, pp. 321–326, 2006.
[3] A. S. Argon & M. Salama, “The mechanism of fracture in glassy materials capable of some inelastic deformation”, Mater. Sci. Eng., Vol. 23, No. 2–3, pp. 219–230, 1976.
[4] Q. He, J. K. Shang, E. Ma & J. Xu, “Crack-resistance curve of a Zr-Ti-Cu-Al bulk metallic glass with extraordinary fracture toughness”, Acta Mater., Vol. 60, No. 12, pp. 4940–4949, 2012.
[5] J. Schroers & W. L. Johnson, “Ductile bulk metallic glass”, Phys. Rev. Lett., Vol. 93, No. 25, pp. 20–23, 2004.
[6] X. K. Xi, D. Q. Zhao, M. X. Pan, W. H. Wang, Y. Wu & J. J. Lewandowski, “Fracture of brittle metallic glasses: Brittleness or plasticity”, Phys. Rev. Lett., Vol. 94, No. 12, pp. 25–28, 2005.
[7] A. L. Greer, Y. Q. Cheng & E. Ma, “Shear bands in metallic glasses”, Mater. Sci. Eng. R Reports, Vol. 74, No. 4, pp. 71–132, 2013.
[8] R. Narasimhan, P. Tandaiya, I. Singh, R. L. Narayan & U. Ramamurty, “Fracture in metallic glasses: mechanics and mechanisms”, Int. J. Fract., Vol. 191, No. 1–2, pp. 53–75, 2015.
[9] Q. K. Jiang, X. D. Wang, X. P. Nie, G. Q. Zhang, H. Ma, H. J. Fecht, J. Bendnarcik, H. Franz, Y. G. Liu, Q. P. Cao & J. Z. Jiang, “Zr-(Cu,Ag)-Al bulk metallic glasses”, Acta Mater., Vol. 56, No. 8, pp. 1785–1796, 2008.
[10] X. Wang, Q. P. Cao, Y. M. Chen, K. Hono, C. Zhong, Q. K. Jiang, X. P. Nie, L. Y. Chen, X. D. Wang & J. Z. Jiang, “A plastic Zr-Cu-Ag-Al bulk metallic glass”, Acta Mater., Vol. 59, No. 3, pp. 1037–1047, 2011.
[11] Q. P. Cao, J. B. Jin, Y. Ma, X. Z. Cao, B. Y. Wang, S. X. Qu, X. D. Wang, D. X. Zhang & J. Z. Jiang, “Enhanced plasticity in Zr-Cu-Ag-Al-Be bulk metallic glasses”, J. Non. Cryst. Solids, Vol. 412, pp. 35–44, 2015.
[12] W. Zhang, A. Inoue & X. M. Wang, “Developments and applications of bulk metallic glasses”, Rev. Adv. Mater. Sci., Vol. 18, pp. 1–9, 2008.
[13] س. فیروزآبادی، ک. دهقانی، م. نادری و ف. محبوبی، "بررسی چقرمگی شکست و حساسیت به نرخ کرنش لایه نازک نیترید تانتالوم تولید شده به روش کندوپاش مغناطیسی واکنشی"، فرآیندهای نوین در مهندسی مواد، دوره 13، شماره 1، ص 103-113، 1398.
[14] Q. S. Zhang, W. Zhang & A. Inoue, “Transition from plasticity to brittleness in Cu-Zr-based bulk metallic glasses”, Mater. Trans., Vol. 48, No. 6, pp. 1272–1275, 2007.
[15] Y. H. Liu, G. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan & W. H. Wang, “Super plastic bulk metallic glasses at room temperature”, Science (80)., Vol. 315, No. 9, pp. 1385–1388, 2007.
[16] J. J. Lewandowski, W. H. Wang & A. L. Greer, “Intrinsic plasticity or brittleness of metallic glasses”, Philos. Mag. Lett., Vol. 85, No. 2, pp. 77–87, 2005.
[17] M. T. Asadi Khanouki, R. Tavakoli & H. Aashuri, “Effect of the strain rate on the intermediate temperature brittleness in Zr-based bulk metallic glasses”, J. Non. Cryst. Solids, Vol. 475, pp. 172–178, 2017.
[18] M. D. Demetriou, M. E. Launey, G. Garrett, J. P. Schramm, D. C. Hofmann, W. L. Johnson & R. O. Ritchie, “A damage-tolerant glass”, Nat. Mater., Vol. 10, No. 2, pp. 123–128, 2011.
[19] R. D. Conner, W. L. Johnson, N. E. Paton & W. D. Nix, “Shear bands and cracking of metallic glass plates in bending”, J. Appl. Phys., Vol. 94, No. 2, pp. 904–911, 2003.
[20] R. D. Conner, Y. Li, W. D. Nix & W. L. Johnson, “Shear band spacing under bending of Zr-based metallic glass plates”, Acta Mater., Vol. 52, No. 8, pp. 2429–2434, 2004.
[21] R. L. Narayan, P. Tandaiya, R. Narasimhan & U. Ramamurty, “Wallner lines, crack velocity and mechanisms of crack nucleation and growth in a brittle bulk metallic glass”, Acta Mater., Vol. 80, pp. 407–420, 2014.
[22] G. Wang, D. Q. Zhao, H. Y. Bai, M. X. Pan, A. L. Xia, B. S. Han, X. K. Xi, Y. Wu & W. H. Wang, “Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses”, Phys. Rev. Lett., Vol. 98, No. 23, pp. 1–4, 2007.
[23] K. M. Flores & R. H. Dauskardt, “Mode II fracture behavior of a Zr-based bulk metallic glass”, J. Mech. Phys. Solids, Vol. 54, No. 11, pp. 2418–2435, 2006.
[24] M. T. Asadi Khanouki, R. Tavakoli & H. Aashuri, “Effect of temperature on the fracture surface morphology of Ti- and Zr-based bulk metallic glasses: exploring correlation between morphology and plasticity”, J. Mater. Sci., Vol. 53, No. 14, pp. 10372–10382, 2018.
[25] A. Dubach, F. H. D. Torre & J. F. Lffler, “Deformation kinetics in Zr-based bulk metallic glasses and its dependence on temperature and strain-rate sensitivity”, Philos. Mag. Lett., Vol. 87, No. 9, pp. 695–704, 2007.
[26] Q. Wang, J. J. Liu, Y. F. Ye, T. T. Liu, S. Wang, C. T. Liu, J. Lu & Y. Yang, “Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses”, Mater. Today, Vol. 20, No. 6, pp. 293–300, 2017.
[27] M. T. Asadi Khanouki, R. Tavakoli & H. Aashuri, “On the origin of intermediate temperature brittleness in La-based bulk metallic glasses”, J. Alloys Compd., Vol. 770, pp. 535–539, 2019.
[28] X. L. Bian, G. Wang, J. Yi, Y. D. Jia, J. Bednarcík, Q. J. Zhai, I. Kaban, B. Sarac, M. Mühlbacher, F. Spieckermann, J. Keckes & J. Eckert, “Atomic origin for rejuvenation of a Zr-based metallic glass at cryogenic temperature”, J. Alloys Compd., Vol. 718, pp. 254–259, 2017.
[29] S. V. Ketov, Y. H. Sun, S. Nachum, Z. Lu, A. Checchi, A. R. Beraldin, H. Y. Bai, W. H. Wang, D. V. Louzguine-Luzgin, M. A. Carpenter & A. L. Greer, “Rejuvenation of metallic glasses by non-affine thermal strain”, Nature, Vol. 524, No. 13, pp. 200–203, 2015.
[30] X. Bian, G. Wang, Q. Wang, B. Sun, I. Hussain, Q. Zhai, N. Mattern, J. Bednarčík & J. Eckert, “Cryogenic-temperature-induced structural transformation of a metallic glass”, Mater. Res. Lett., Vol. 5, No. 4, pp. 284–291, 2017.
[31] C. Wang, Q. P. Cao, X. D. Wang, D. X. Zhang, U. Ramamurty, R. L. Narayan & J. Z. Jiang, “Intermediate temperature brittleness in metallic glasses”, Adv. Mater., Vol. 29, No. 14, 2017.
[32] F. Jiang, M. Q. Jiang, H. F. Wang, Y. L. Zhao, L. He & J. Sun, “Shear transformation zone volume determining ductile-brittle transition of bulk metallic glasses”, Acta Mater., Vol. 59, No. 5, pp. 2057–2068, 2011.
[33] B. Lawn, Fracture of brittle solids, 2nd ed. Cambridge: Cambridge University Press, 1993.
[34] F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metall., Vol. 25, No. 4, pp. 407–415, 1977.
[35] J. J. Lewandowski & A. L. Greer, “Temperature rise at shear bands in metallic glasses”, Nat. Mater., Vol. 5, No. 1, pp. 15–18, 2006.
[36] B. Yang, C. T. Liu, T. G. Nieh, M. L. Morrison, P. K. Liaw & R. A. Buchanan, “Localized heating and fracture criterion for bulk metallic glasses”, J. Mater. Res., Vol. 21, No. 4, pp. 915–922, 2006.
[37] G. Taylor, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I”, Proc. R. Soc. A Math. Phys. Eng. Sci., Vol. 201, pp. 192–196, 1950.
[38] P. G. Saffman & G. Taylor, “The Penetration of a Fluid into a Porous Medium or Hele-Shaw Cell Containing a More Viscous Liquid”, Proc. R. Soc. A Math. Phys. Eng. Sci., Vol. 245, No. 1242, pp. 312–329, 1958.
[39] M. Q. Jiang, Z. Ling, J. X. Meng & L. H. Dai, “Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage”, Philos. Mag., Vol. 88, No. 3, pp. 407–426, 2008.
[40] P. Tandaiya, R. Narasimhan & U. Ramamurty, “On the mechanism and the length scales involved in the ductile fracture of a bulk metallic glass”, Acta Mater., Vol. 61, No. 5, pp. 1558–1570, 2013.