تاثیر حضور آب، بنزیل الکل و درصد CNT بر روی خواص نانوکامپوزیت TiO2-CNT تولید شده به روش سل-ژل درجا
محورهای موضوعی : سنتز موادعلیرضا شافعی 1 , سعید شیبانی 2 *
1 - دانشکده مهندسی متالورژی و مواد، پردیس دانشکدههای فنی، دانشگاه تهران، تهران، ایران
2 - دانشکده مهندسی متالورژی و مواد، پردیس دانشکدههای فنی، دانشگاه تهران، تهران، ایران
کلید واژه: نانوکامپوزیت, TiO2, سل-ژل درجا, نانولوله کربن,
چکیده مقاله :
در این پژوهش، نانوکامپوزیت TiO2-CNT به روش سل-ژل درجا تهیه شده است. نقش پارامترهای این فرآیند بر روی مورفولوژی پودر نهایی در سه بخش حضور بنزیل الکل، مرحله افزودن آب و درصد CNT بررسی شد. جهت مشخصه یابی از میکروسکوپ الکترونی روبشی نشر میدانی و دستگاه پراش اشعه ایکس استفاده شد. در مرحله اول تاثیر کلسیناسیون انجام شده بر روی ساختار پودر ارزیابی شد. نتایج حاصل از پراش اشعه ایکس نشان داد که پودرهای کامپوزیتی قبل از کلسیناسیون دارای ساختار آمورف است و بعد از آن به TiO2 با ساختار آناتاز تبدیل می شود. نتایج تصاویر مربوط به میکروسکوپ الکترونی روبشی نشر میدانی نشان می دهند که در صورت استفاده نکردن از بنزیل الکل، پودری با مورفولوژی غیریکنواخت و آگلومره شده بدست می آید. علاوه بر این، حضور آب از ابتدای فرآیند منجر به واکنش هیدرولیز با سرعت آرام تر شده و لذا پودر نانوکامپوزیتی با ساختار ریزتر و پوشش مطلوب تر TiO2 روی CNT به دست می آید. همچنین با کاهش درصد CNT از 10 به 1 درصد، پودر کامپوزیتی با اندازه ذرات درشت تر تشکیل می شود که به دلیل کاهش سطح CNT در دسترس برای تشکیل ذرات TiO2 است.
In this paper, nano-composite powder of TiO2 and multi-walled carbon nanotubes (CNTs) was synthesized by in-situ sol-gel method. The effect of processing parameters of benzyl alcohol, H2O and CNT content (1 and 10 wt.%) on the prepared powder morphology was investigated. The samples were characterized via field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) analysis. Firstly, the influence of calcination stage on the powders structure was evaluated. XRD results showed amorphous structures for the composite powders before calcination and the dominant structure of anatase TiO2 after calcination treatment. FESEM results showed a non-uniform and agglomerated morphology without benzyl alcohol. Furthermore, addition of Tetrabutyl-orthotitanate solution to the initial solution containing H2O as the hydrolysis agent resulted in finer powder microstructure with uniform coating of TiO2 on CNTs due to slower hydrolysis reaction. The effect of CNTs on the morphology depends on percent of CNTs. Also, composite powder with higher particle size was formed with the decrease of CNT content from 10 to 1 percent which is attributed to the decreased and less accessible surface area to TiO2 particles formation.
[1] S. N. Frank & A. J. Bard, “Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powderˮ, J. Am. Chem. Soc., Vol. 99, pp. 303-304, 1977.
[2] Fuerte, M. D. Hernandez Alonso, A. J. Maira, A. Martinez Arias, M. Fernandez Garcia, J. C. Conesa & J. Soria, “Visible light-activated nanosized doped-TiO2 photocatalystsˮ, J. Chemical Communications, Vol. 24, pp. 2718-2719, 2001.
[3] T. Ihara, M. Miyoshi, M. Ando, S. Sugihara & Y. Iriyama, “Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatmentˮ, J. Materials Science, Vol. 36, pp. 4201-4207, 2001.
[4] ا. حیدری، م. جعفری و ع. صفار تلوری، "سنتز و مشخصه یابی ریزساختاری نانوکامپوزیت سه تایی SiO2-Al2O3-ZnO تولید شده به روش سل-ژل"، مجله فرآیندهای نوین در مهندسی مواد، دوره 9، شماره 1، صفحه 178-169، 1394.
[5] Y. Li, T. J. White & S. H. Lim, “Low Temperature Synthesis and Microstructural Control of Titania Nano-Particlesˮ, J. Solid State Chemistry, Vol. 177, pp. 1372-1381, 2004.
[6] Z. Yuan & L. Zhang, “Influence of ZnO+Fe2O3 Additives on the Anatase-to-Rutile Transformation of Nanometer TiO2 Powdersˮ, J. NanoStructured Materials, Vol. 10, pp. 1127-1133, 1998.
[7] W. Li, S. Ismat Shah, C. P. Huang, O. Jung & C. Ni, “Metalorganic Chemical Vapor Deposition and Characterization of TiO2 Nanoparticlesˮ, J. Materials Science and Engineering, Vol. 96, pp. 247-253, 2002.
[8] Fujishima & K. Honda, “Electrochemical photolysis of water at a semiconductor electrodeˮ, J. Nature, Vol. 238, pp. 37-38, 1972.
[9] F. Wang, L. Feng, D. Zhang, Q. Tang & D. Feng, “A first-principles calculation on electronic structure and optical performance of chromium and nitrogen co doped anatase titanium dioxideˮ, J. Alloys Comp., Vol. 611, pp. 125-129, 2014.
[10] M. Anpo, “Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation methodˮ, J. Pure and Applied Chemistry, Vol. 72, pp. 1787-1792, 2000.
[11] H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, Y. Ichihashi, F. Goto, M. Ishida, T. Sasaki & M. Anpo, “Metal ionimplantation and ionized cluster beam methodˮ, J. Synchrotron Rad., Vol. 8, pp. 569-571, 2001.
[12] Y. Liu, X. Chen, J. Li & C. Burda, “Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalystsˮ, J. Chemosphere, Vol. 61, pp. 11-18, 2005.
[13] T. Hirai, K. Suzuki & I. Komasawa, “Preparation and photocatalytic properties of composite CdS nanoparticles-titanium dioxide particlesˮ, J. Colloid and Interface Science, Vol. 244, pp. 262-265, 2001.
[14] K. Nguyen, M. Ngoc & M. Nguyen, “Enhanced photocatalytic activity of nanohybrids TiO2/CNTs materialsˮ, J. Materials Letters, Vol. 165, pp. 247-251, 2016.
[15] M. S. Dresselhaus, G. Dresselhaus & A. Jorio, “Unusual Properties and Structure of Carbon Nanotubesˮ, J. Annual Review of Materials Research, Vol. 34, pp. 247-278, 2004.
[16] P. Serp, M. Corrias & P. Kalck, Carbon Nanotubes and Nanofibers in Catalysisˮ, J. Applied Catalysis, Vol. 253, pp. 337-358, 2003.
[17] T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Beneentt, H. F. Ghaemi & T. Thio, “Electrical conductivity of individual carbon nanotubesˮ, J. Nature. Vol. 382, pp. 54-56, 1996.
[18] J. Kasetsart, “An Alkoxide Free Sol-Gel Synthesis of Nanosized TiO2ˮ, J. Natural Science, Vol. 41, pp. 178-185, 2007.
[19] C. J. Brinker & G. W. Scherer, “Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processingˮ, J. advanced materials, Vol. 3, pp. 552, 1991.
[20] Q. Guo, R. Ghadiri, T. Weigel, A. Aumann, L. Gurevich, C. Esen, O. Medenbach & W. Cheng, “Comparison of in Situ and ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites Polymersˮ, J. Polymers, Vol. 6, pp. 2037-2050, 2014.
[21] D. Levy & M. Zayat, “Chemistry and Fundamentals of the Sol–Gel Processˮ, J. Sol-Gel Science and Technology, Vol. 1, pp. 1-28, 2015.
[22] D. Tasis, N. Tagmatarchis, V. Georgakilas & M. Prato, “Soluble Carbon Nanotubesˮ, J. Chemistry European, Vol. 9, pp. 4000-4008, 2003.
[23] M. Niederberger, M. H. Bartl & G. D. Stucky, “Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionalityˮ, J. Am Chem Soc., Vol. 124, pp. 13642-13643, 2002.
[24] M. Niederberger, M. H. Bartl & G. D. Stucky, “Benzyl Alcohol and Titanium Tetrachloride A Versatile Reaction System for the Nonaqueous and Low-Temperature Preparation of Crystalline and Luminescent Titania Nanoparticlesˮ, J. Chem. Mater, Vol. 14, pp. 4364-4370, 2002.
[25] T. Sainsbury & D. Fitzmaurice, “An experimental and theoretical study of the self-assembly of gold nanoparticles at the surface of functionalized multiwalled carbon nanotubesˮ, J. Chem. Mater, Vol. 16, pp. 3780-3790, 2004.
[26] Gomathi, S. R. C. Vivekchand, A. Govindaraj & C. N. R. Rao, “Chemically Bonded Ceramic Oxide Coatings on Carbon Nanotubes and Inorganic Nanowiresˮ, J. Advanced Materials, Vol. 17, pp. 2757-2761, 2005.
[27] Kongkanand, R. M. Dominguez & P. V. Kamat, “Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electronsˮ, J. Nano Letters, Vol. 7, pp. 676-680, 2007.
[28] Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, F. beguin & S. Bonnamy, “Synthesis and characterization of carbon nanotubes–TiO2 nanocompositesˮ, J. Carbon, Vol. 42, pp. 1147-1151, 2004.
[29] P. Vincent, A. Brioude, C. Journet, S. Rabaste, S. T. Purcell, J. L. Brusq & J. C. Plenet, “Inclusion of carbon nanotubes in a TiO2 sol–gel matrixˮ, J. Non-Crystalline Solids, Vol. 311, pp. 130-137, 2002.
[30] X. B. Yan, B. K. Tay & Y. Yang, “Dispersing and Functionalizing Multiwalled Carbon Nanotubes in TiO2 Solˮ, J. Physical. Chemistry, Vol. 110B, pp. 25844-25849, 2006.
[31] L. Smrcok, V. Langer & J. Krestan, “Gamma-alumina: a single-crystal X-ray diffraction studyˮ, J. Acta Crystallogr, Vol. 62C, pp. 183-184, 2006.
[32] B. D. Cullity & S. R. Stock, “Elements of X-ray Diffractionˮ, third ed., Prentice Hall, Upper Saddle River, NJ., pp. 399, 2001.
[33] D. Eder & A. H. Windle, “Morphology control of CNT-TiO2 hybrid materials and rutile nanotubesˮ, J. Materials Chemistry, Vol. 18, pp. 2036-2043, 2008.
[34] L. A. Dobrzanskia, M. Pawlytaa, A. Krzton, B. Liszka, C. W. Tai & W. Kwasny, “Synthesis and Characterization of Carbon Nanotubes Decorated with Gold Nanoparticlesˮ, J. Nanomaterials, Vol. 118, pp. 483-486, 2010.
[35] D. Eder & H. Windle, “Carbon–Inorganic Hybrid Materials: The Carbon-Nanotube TiO2 Interfaceˮ, J. Advanced material, Vol. 20, pp. 1787-1793, 2008.
[36] خ. یوسفی، س. م. زبرجد و ج. وحدتی خاکی، "مقایسه اثر پلی اتیلن گیکول بر مورفولوژی نانوذرات هیدروکسی آپاتیت تولید شده در دو روش سل-ژل و رسوبی"، مجله فرآیندهای نوین در مهندسی مواد، سال 9، شماره 1، صفحه 61-55، 1394.
_||_