بررسی اثر حلال های اتانول، اتیلن گلیکول و آب دیونیزه بر خواص ساختاری و نوری نانومواد هیبریدی نقره-اکسیدمس ساخته شده به روش مایکرویو-سولوترمال/هیدروترمال
محورهای موضوعی : سنتز موادمهرداد سلطانی 1 , فرید جمالی شینی 2 *
1 - گروه مهندسی مواد، واحد اهواز، دانشگاه آزاد اسلامی، ایران
2 - گروه فیزیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
کلید واژه: نانوذرات نقره, خواص ساختاری, خواص نوری, مایکرویو-سولوترمال/هیدروترمال, نانوذرات اکسیدمس,
چکیده مقاله :
برای سنتز نانومواد هیبریدی نقره و اکسیدمس با فرآیند مایکروویو-سولوترمال/هیدروترمال از آب دیونیزه، اتانول و اتیلن گلیکول به عنوان حلال استفاده شده است. اثر نوع حلال بر خواص ساختاری و نوری مورد مطالعه قرار گرفت. نمونه های بدست آمده با استفاده ازآنالیزهای الگوی پراش، میکروسکوپ الکترونی عبوری، طیف سنجی نورتابناکی و جذبی مورد مشخصه یابی قرار گرفتند. برای تمام نمونه ها دمای تابش دهی °C 120 و زمان تابش دهی min 5 استفاده شده است. مطالعات الگوی پراش نمونه ها نشان داد که محصول بدست آمده دارای فاز های نقره و اکسیدمس می باشد. آنالیز عنصری نمونه ها حضور عناصر نقره، مس و اکسیژن را در نمونه ها نشان داد. تصاویرمیکروسکوپ الکترونی عبوری حکایت ازشکل های غیر منظم و بهم چسبیده نقره و اکسیدمس دارد. لبه جذب در مقایسه با حالتی که از آب دیونیزه استفاده شد یک جابجایی بسمت طول موج های کمتر (جابجایی آبی) را نشان داد. یک کاهش در شدت باند گسیلی برای نانوساختارهای سنتز شده در اتانول و اتیلن گلیکول در مقایسه با نمونه ساخته شده در آب دیونیزه وجود دارد.
In this research work, the synthesis of hybrid silver (Ag) and copper oxide (CuO) was carried out by solvo/hydrothermal-microwave process in the deionized water (H2O), ethanol (C2H6O) and ethylene glycol (C2H6O2) solvents and the effects of solvent type on structural and optical properties were studied. The obtained samples were characterized by X-ray diffractometer (XRD), scanning and transmission electron microscopies (SEM and TEM), photoluminescence (PL) and absorption spectroscopies (UV-Vis). The XRD study of the samples showed presence of Ag (Cubic) and CuO (Monoclinic (phase in the obtained materials. Elemental analysis (EDS) showed presence of Ag, Cu, and O in the samples. Electron microscopes images revealed non-regular and impacted samples of Ag and CuO. The intensity of emission band of synthesized nanostructures in ethanol and ethylene glycol were reduced and it was observed a shift in the absorption edge towards lower wavelength (blue shift) in compared with synthesized samples in deionized water.
[1] H. Wang, J. Z. Xu, J. J. Zhu & H. Y. Chen, “Preparation of CuO nanoparticles by microwave irradiationˮ, Journal of Crystal Growth, Vol. 244, No. 1, pp. 88-94, 2002.
[2] C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environmentˮ, The Journal of Physical Chemistry C, Vol. 111, No. 10, pp. 3806-3819, 2007.
[3] D. M. Schaadt, B. Feng & E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticlesˮ, Applied Physics Letters, Vol. 86, No. 6, pp. 063106, 2005.
[4] S. Gurunathan, “Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutansˮ, Arabian Journal of Chemistry, 2014. https://doi.org/10.1016/j.arabjc.2014.11.014
[5] H. M. M. Ibrahim, “Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganismsˮ, Journal of Radiation Research and Applied Sciences, Vol. 8, No. 3, pp. 265-275, 2015.
[6] K. Borgohain & S. Mahamuni, “Formation of single-phase CuO quantum particlesˮ, Journal of materials research, Vol. 17, No. 5, pp. 1220-1223, 2002.
[7] B. J. Hansen, N. Kouklin, G. Lu, I. K. Lin, J. Chen & X. Zhang, “Transport, analyte detection, and opto-electronic response of p-type CuO nanowiresˮ, The Journal of Physical Chemistry C, Vol. 114, No. 6, pp. 2440-2447, 2010.
[8] G. Chen, H. Zhou, W. Ma, D. Zhang, G. Qiu & X. Liu, “Microwave-assisted synthesis and electrochemical properties of urchin-like CuO micro-crystalsˮ, Solid State Sciences, Vol. 13, No. 12, pp. 2137-2141, 2011.
[9] M. A. Dar, Y. S. Kim, W. B. Kim, J. M. Sohn, H. S. Shin, “Structural and magnetic properties of CuO nanoneedles synthesized by hydrothermal methodˮ, Applied Surface Science, Vol. 254, No. 22, pp. 7477-7481, 2008.
[10] Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu & S. Yang, “CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applicationsˮ, Progress in Materials Science, Vol. 60, No. pp. 208-337, 2014.
[11] X. Lin, R. Zhou, J. Zhang & S. Fei, “A novel one-step electron beam irradiation method for synthesis of Ag/Cu2O nanocompositesˮ, Applied Surface Science, Vol. 256, No. 3, pp. 889-893, 2009.
[12] G. Zhu, H. Xu, Y. Xiao, Y. Liu, A. Yuan & X. Shen, “Facile fabrication and enhanced sensing properties of hierarchically porous CuO architecturesˮ, ACS applied materials & interfaces, Vol. 4, No. 2, pp. 744-751, 2012.
[13] H. Kim, C. Jin, S. Park, S. Kim & C. Lee, “H 2 S gas sensing properties of bare and Pd-functionalized CuO nanorodsˮ, Sensors and Actuators B: Chemical, Vol. 161, No. 1, pp. 594-599, 2012.
[14] S. Gao, Z. Li, K. Jiang, H. Zeng, L. Li, X. Fang, X. Jia & Y. Chen, “Biomolecule-assisted in situ route toward 3D superhydrophilic Ag/CuO micro/nanostructures with excellent artificial sunlight self-cleaning performanceˮ, Journal of Materials Chemistry, Vol. 21, No. 20, pp. 7281-7288, 2011.
[15] L. Pan, L. Li & Y. Chen, “Synthesis of Ag/Cu 2 O hybrids and their photocatalytic degradation treatment of p-nitrophenolˮ, IET Micro & Nano Letters, Vol. 6, No. 12, pp. 1019-1022, 2011.
[16] C. C. Tseng, J. H. Hsieh, S. J. Liu & W. Wu, “Effects of Ag contents and deposition temperatures on the electrical and optical behaviors of Ag-doped Cu2O thin filmsˮ, Thin Solid Films, Vol. 518, No. 5, pp. 1407-1410, 2009.
[17] J. F. Pierson, D. Wiederkehr, J. M. Chappé & N. Martin, “Reactive sputtering: A method to modify the metallic ratio in the novel silver–copper oxidesˮ, Applied Surface Science, Vol. 253, No. 3, pp. 1484-1488, 2006.
[18] A. A. Radhakrishnan & B. B. Beena, “Structural and optical absorption analysis of CuO nanoparticlesˮ, Indian Journal of Advances in Chemical Science, Vol. 2, No. pp. 158-161, 2014.
[19] M. Soltani, F. Jamali-Sheini & R. Yousefi, “Effect of growth condition on structure and optical properties of hybrid Ag-CuO nanomaterialsˮ, Advanced Powder Technology, Vol. 27, No. 5, pp. 2196-2203, 2016.
[20] ا. منشی و س. سلطان عطار، "بهکارگیری روشی نوین در اندازهگیری نانو ذرات با استفاده از رابطه شرر و پراش پرتو ایکس"، فرآیندهای نوین در مهندسی مواد، دوره دوم، شماره سوم، صفحه 9-19، 1387.
[21] ع. خطیبی، ر. ابراهیمی کهریزسنگی و م. قشنگ، "بررسی اثر پارامترهای دما و pH بر مورفولوژی میکروکرههای کامپوزیتی نانواکسیدتیتانیوم/کربن سنتز شده به روش سولوترمال"، فرآیندهای نوین در مهندسی مواد، دوره نهم، شماره چهارم، صفحه 193-20، 1394.
[22] C. O. Kappe, D. Dallinger & S. S. Murphree, Practical microwave synthesis for organic chemists, John Wiley & Sons, 2008.
[23] J. Yang, Z. Li, C. Zhao, Y. Wang & X. Liu, “Facile synthesis of Ag–Cu2O composites with enhanced photocatalytic activityˮ, Materials Research Bulletin, Vol. 60, No. pp. 530-536, 2014.
[24] F. Jamali-Sheini, R. Yousefi, N. A. Bakr, M. Cheraghizade, M. Sookhakian & N. M. Huang, “Highly efficient photo-degradation of methyl blue and band gap shift of SnS nanoparticles under different sonication frequenciesˮ, Materials Science in Semiconductor Processing, Vol. 32, No. pp. 172-178, 2015.
[25] Y. Wang, T. Jiang, D. Meng, J. Kong, H. Jia & M. Yu, “Controllable fabrication of nanostructured copper compound on a Cu substrate by a one-step routeˮ, RSC Advances, Vol. 5, No. 21, pp. 16277-16283, 2015.
[26] J. Yang, Z. Li, W. Zhao, C. Zhao, Y. Wang & X. Liu, “Controllable synthesis of Ag–CuO composite nanosheets with enhanced photocatalytic propertyˮ, Materials Letters, Vol. 120, No. pp. 16-19, 2014.
[27] K. Mageshwari & R. Sathyamoorthy, “Flower-shaped CuO nanostructures: synthesis, characterization and antimicrobial activityˮ, Journal of Materials Science & Technology, Vol. 29, No. 10, pp. 909-914, 2013.
[28] A. Aslani, “Controlling the morphology and size of CuO nanostructures with synthesis by solvo/hydrothermal method without any additivesˮ, Physica B: Condensed Matter, Vol. 406, No. 2, pp. 150-154, 2011.
_||_