بررسی تاثیر زیرلایه فولادی در تشکیل پوشش های کاربیدی کروم و وانادیم با روش نفوذ فعال حرارتی
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدعلی اکبر قادی 1 , حسن ثقفیان 2 , منصور سلطانیه 3 *
1 - دانشجو دکترا/ دانشگاه علم و صنعت ایران
2 - استاد/ دانشگاه علم وصنعت ایران
3 - استاد/ دانشگاه علم و صنعت ایران
کلید واژه: پوشش کاربید کروم و وانادیم, نفوذ فعال حرارتی, زیرلایه فولادی, حمام اکسیدی و فلزی,
چکیده مقاله :
در این تحقیق، به بررسی تاثیر زیرلایه در تشکیل پوشش های کاربیدی کروم و وانادیم با استفاده از روش نفوذ فعال حرارتی پرداخته شده است. پوشش دهی روی زیرلایه H13 در دو حمام اکسیدی و فلزی با نسبت مولی کروم به وانادیم 3، در دمای 1000 درجه سانتیگراد و مدت زمان 14 ساعت صورت گرفته است. نتایج نشان داد فازهای کاربیدی پوشش شامل کاربیدهای کروم (Cr7C3، Cr3C2)، کاربید وانادیم (V8C7) و همچنین فاز Cr2VC2 بود. ضخامت پوشش تشکیل شده روی نمونه H13 در حمام فلزی و اکسیدی به ترتیب برابر 5/0±5/8 و 5/0±5/6 µm بود. میزان مناطق غنی از وانادیم به مناطق غنی از کروم تشکیل شده به عنوان پوشش روی زیرلایه H13 کمتر از میزان مولی نسبت وانادیم به کروم در حمام فلزی بود. نتایج پوشش دهی در این تحقیق با نتایج مربوط به پوشش دهی در شرایط یکسان روی فولاد ساده کربنی CK45 مقایسه شد. ضخامت پوشش و درصد توزیع مناطق غنی از کروم و وانادیم به شدت تحت تاثیر نوع زیرلایه بوده ولی درصد توزیع عناصر در سطح مقطع پوشش تحت تاثیر زیرلایه نبود.
In this research, the effect of substrate on the formation of chromium- and vanadium carbide coating was studied by thermal reactive diffusion. The substrate of H13 steel was coated in two kinds of metal and oxide bath with molar ratio of Cr/V=3 for 14 hour at 1000˚C. Carbide coatings including chromium carbide (Cr3C2, Cr7C3), vanadium carbide (V8C7) and the complex carbide phase of Cr2VC2 were formed on H13 steel. The thickness of the carbide coating was 8.5±0.5 µm and 6.5±0.5 µm, respectively in metal bath and oxide bath. The amount of vanadium- to chromium- rich regions in the carbide coating was less than the ratio of vanadium to chromium content in the metal bath. The results of coating in the present study was compared to the results of coating in a similar condition on Ck45 steel. The type of substrate had an important role on the coating thickness and the phase distribution of vanadium- and chromium- rich regions. However, the element distribution in the coating was not affected by the kind of substrate.
[1] N. Komatsu, T. Arai & M. Mizutani, “Method of Chromizing in a fused salt bath”, USA patent, No. 3671297, 1972.
[2] N. Komatsu, T. Arai & Y. Sugimoto, “Method for a surface treatment of an iron,ferrous alloy or cemented carbide article”, USA patent, No:39305751976.
[3] T. Arai, “Carbide Coating Process by Use of Molten Borax Bath in Japan”, J. Heat Treat., Vol. I, No. 2, pp. 15–22, 1979.
[4] T. Arai, H. Fujita, Y. Sugimoto & Y. Ohta, “Diffusion carbide coatings formed in molten borax systems,” J. Mater. Eng., Vol. 9, No. 2, pp. 183–189, 1987.
[5] T. Arai, “Behavior of nucleation and growth of carbide layers on alloyed carbide particles in substrates in salt bath carbide coating”, Thin Solid Films, Vol. 229, No. 2, pp. 171–179, 1993.
[6] T. Arai & S. Moriyama, “Growth behavior of vanadium carbide coatings on steel substrates by a salt bath immersion coating process”, Thin Solid Films, Vol. 249, No. 1, pp. 54–61, 1994.
[7] T. Arai, S. Moriyama & S. Moriyamab, “Growth behaviour of chromium carbide and niobium carbide layers on steel substrates obtaining by salt bath immersion process”, Thin Solid Films, Vol. 259, No. 1, pp. 174–180, 1995.
[8] T. Arai, “The thermo-reactive deposition and diffusion process for coating steels to improve wear resistanceˮ, Thermochemical Surface Engineering of Steels, pp. 703-735, 2015.
[9] X. J. Liu, H. C. Wang & Y. Y. Li, “Effects of rare earths in borax salt bath immersion vanadium carbide coating process on steel substrate”, Surf. Coatings Technol., Vol. 202, No. 19, pp. 4788–4792, 2008.
[10] Ghadi, M. Soltanieh & H. R. Karimi Zarchi, “Effect of Salt Bath Composition on the Chromium Diffusion on Plain Carbon Steels by TRD Process”, Defect Diffus. Forum., Vol. 326–328, pp. 377–382, 2012.
[11] Ghadi & M. Soltanieh, “Effect of carbon presence in the substrate and salt bath on the formation of chromium coating layers on steel through TRD process”, Ceram. Process. Res., Vol. 16, No. 6, pp. 657–661, 2015.
[12] X. Fan, Z. G. G. Yang, C. Zhang & Y. D. D. Zhang, “Thermo-reactive deposition processed vanadium carbide coating: growth kinetics model and diffusion mechanism”, Surf. Coatings Technol., Vol. 208, pp. 80–86, Sep. 2012.
[13] F. E. Castillejo, D. M. Marulanda & J. J. Olaya, “Production and characterization of niobium carbide coatings produced on tool steels by thermoreactive deposition / diffusion”, Vol. 22, pp. 189–195, 2014.
[14] G. Khalaj, A. Nazari, S. M. M. Khoie, M. J. Khalaj, H. Pouraliakbar, S. Mohammad, M. Khoie & M. Javad, “Chromium carbonitride coating produced on DIN 1.2210 steel by thermo-reactive deposition technique: Thermodynamics, kinetics and modeling”, Surf. Coatings Technol., Vol. 225, pp. 1–10, 2013.
[15] Ghadi, M. Soltanieh, H. Saghafian & Z. G. Yang, “Investigation of chromium and vanadium carbide composite coatings on CK45 steel by Thermal Reactive Diffusion”, Surf. Coatings Technol., Vol. 289, pp. 1–10, 2016.
[16] X. S. Fan, Z. G. Yang, C. Zhang, Y. D. Zhang & H. Q. Che, “Evaluation of vanadium carbide coatings on AISI H13 obtained by thermo-reactive deposition/diffusion technique”, Surf. Coatings Technol., Vol. 205, No. 2, pp. 641–646, 2010.
[17] H. R. K. Zarchi, M. Jalaly, M. Soltanieh & H. Mehrjoo, “Comparison of the Activation Energies of the Formation of Chromium Carbide Coating on Carburized and Uncarburized AISI 1020 Steel”, Steel Res. Int., Vol. 80, No. 11, pp. 859–864, 2009.
[18] X. S. Fan, Z. G. Yang, Z. X. Xia, C. Zhang & H. Q. Che, “The microstructure evolution of VC coatings on AISI H13 and 9Cr18 steel by thermo-reactive deposition process”, J. Alloys Compd., Vol. 505, pp. 15–18, 2010.
[19] F. Chen & P. Lee, “Thermal reactive deposition coating of chromium carbide on die steel in a fluidized bed furnace”, Mater. Chem. Phys., Vol. 53, pp. 19–27, 1998.
[20] P. C. King, R. W. Reynoldson, A. Brownrigg & J. M. Long, “Fluidized Bed CrN Coating Formation on Prenitrocarburized Plain Carbon Steel”, J. Mater. Eng. Perform., Vol. 13, No. 4, pp. 431–438, 2004.
[21] C. Y. Wei & F. S. Chen, “Thermoreactive deposition/diffusion coating of chromium carbide by contact-free method”, Mater. Chem. Phys., Vol. 91, No. 1, pp. 192–199, 2005.
[22] P. C. King, R. W. Reynoldson, A. Brownrigg & J. M. Long, “Cr(N,C) diffusion coating formation on pre-nitrocarburised H13 tool steel”, Surf. Coatings Technol., Vol. 179, No. 1, pp. 18–26, Feb. 2004.
[23] U. Sen, “Wear properties of niobium carbide coatings performed by pack method on AISI 1040 steel”, Thin Solid Films, Vol. 483, No. 1–2, pp. 152–157, 2005.
[24] U. Sen, “Kinetics of niobium carbide coating produced on AISI 1040 steel by thermo-reactive deposition technique”, Mater. Chem. Phys., Vol. 86, No. 1, pp. 189–194, 2004.
[25] S. Sen, “Influence of chromium carbide coating on tribological performance of steel”, Mater. Des., Vol. 27, No. 2, pp. 85–91, 2006.
[26] S. Sen, “A study on kinetics of CrxC-coated high-chromium steel by thermo-reactive diffusion technique”, Vacuum, Vol. 79, No. 1–2, pp. 63–70, 2005.
[27] U. Sen, “Friction and wear properties of thermo-reactive diffusion coatings against titanium nitride coated steels”, Mater. Des., Vol. 26, pp. 167–174, 2005.
[28] Kurt, Y. Küçük & M. S. Gök, “Microabrasion wear behavior of VC and CrC coatings deposited by Thermo-Reactive Diffusion technique”, Tribol. Trans., Vol. 57, pp. 345–352, 2014.
[29] X. Liu, H. Wang, D. Li & Y. Wu, “Study on kinetics of carbide coating growth by thermal diffusion process”, Surf. Coatings Technol., Vol. 201, No. 6, pp. 2414–2418, 2006.
[30] M. Biesuz & V. M. Sglavo, “Chromium and vanadium carbide and nitride coatings obtained by TRD techniques on UNI 42CrMoS4 (AISI 4140) steel”, Surf. Coatings Technol., Vol. 286, No. Aisi 4140, pp. 319–326, 2016.
[31] م. م. غفاری، ح. پایدار و م. خانزاده قرهشیران، " بررسی سختی و خواص سایشی در پوشش سخت پودری ایجاد شده در سیستم Fe-Cr-C-Mo به روش جوشکاری GTAW بر روی فولاد ساده کربنی"، مجله فرآیندهای نوین در مهندسی مواد، جلد یازده، شماره 2، ص 109-122، تابستان 1396.
[32] ا. امیرکاوئی و ع. سعیدی، " تولید پودر کاربید کروم (Cr3C2) به روشهای سنتز احتراقی و مکانوشیمیایی"، مجله فرآیندهای نوین در مهندسی مواد، جلد 4، شماره 1، ص 47-55، بهار 1389.
[33] N. Komatsu, T. Arai & H. Fujita, “Treating composition, forming a mixed carbide layer of Va-Group element and of chromium on a ferrous alloy surface and resulting product”, USA Patent, No 42307511980.
[34] J. Bratberg & K. Frisk, “An Experimental and Theoretical Analysis of the Phase Equilibria in the Fe-Cr-V-C System”, Metall. Mater. Trans. A, Vol. 35, pp. 3649–3663, 2004.
[35] Lee & D. Lee, “A Thermodynamic Evaluation of the Fe-Cr-V-C System”, J. phase equilibria, Vol. 13, No. 4, pp. 349–364, 1992.
_||_