تأثیر سرعت چرخش ابزار بر خواص مکانیکی و رفتار خوردگی اتصال غیرهمجنس آلیاژ آلومینیوم 5083 و تیتانیوم خالص تجاری به روش جوشکاری همزن اصطکاکی
محورهای موضوعی : خوردگی و حفاظت موادمسعود شعبانی 1 * , بهروز شایق بروجنی 2 , رضا ابراهیمی کهریزسنگی 3
1 - دانشجوی کارشناسی ارشد، مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، اصفهان، ایران.
2 - استادیار، دانشگاه شهرکرد، ایران
3 - استاد،مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، اصفهان، ایران
کلید واژه: خواص مکانیکی, رفتار خوردگی, جوشکاری همزن اصطکاکی, تیتانیوم خالص تجاری, آلومینیوم 5083,
چکیده مقاله :
در این مقاله، تأثیر سرعت چرخش ابزار بر روی خواص مکانیکی و خوردگی اتصال تیتانیوم خالص تجاری و آلیاژ آلومینیوم 5083، به روش همزن اصطکاکی، بررسی شده است. ابتدا با جوشکاریهای مقدماتی محدوده پارامترهای لازم برای دستیابی به اتصال مناسب بدست آمده و سپس با تغییر سرعت چرخش ابزار، خواص مکانیکی و خوردگی نواحی متأثر از حرارت، ناحیة جوش و سطح مقطع جوش به کمک آزمون پلاریزاسیون تافل و روش طیفنگاری امپدانس الکتروشیمیایی، بررسی شده و نتایج حاصل مورد مقایسه قرار گرفته است. نتایج نشان میدهد که رفتار خوردگی در اتصالات، از سرعت چرخش ابزار تأثیر پذیر بوده و نواحی جوش و متأثر از حرارت، مقاومت در برابر خوردگی ضعیفتری نسبت به فلزات پایه داشتهاند.
In this paper, the effect of tool rotation speed on the mechanical properties and corrosion behavior on dissimilar joints Friction Stir Welds between 5083 Aluminium alloy and pure Titanium is investigated. At first, with primary welding parameters range necessary to achieve suitable connection obtained and then by changing tool rotation speed, mechanical and corrosion properties of heat affected zones, welding zones and cross section zones, by using polarization Tafel test and Electrochemical Impedance Spectroscopy was investigated and the result were compared. the result indicates that corrosion behavior of connections, is impressionable of the tool rotation speed and welding zone and heat affected zones have weaker corrosion resistance compared to the base metals.
[1] P.J. Blau, “Friction science and technology: from concepts to applicationsˮ, CRC press, 2008.
[2] Z. Feng, M. L. Santella, S. A. david, R. J. Steel & S. M. Packer, “Friction stir spot welding of advanced high-strength steels-A feasibility studyˮ, SAE Technical Paper, 2005.
[3] W. M. Thomas, E. D Nicholas, E. R. Watts & M. G. Murch, “Method of operating on a workpieceˮ, Google Patents, 1995.
[4] R. S. Mishra & Z. Ma, “Friction stir welding and processingˮ, Materials Science and Engineering, Vol. 50, pp. 1-78, 2005.
[5] W. M. Thomas, E. D Nicholas, E. R. Watts & M. G. Murch, “Friction based welding technology for aluminiumˮ, in Materials Science Forum. Vol. 396, pp. 1543-1548, 2002.
[6] M. Ericsson & R. Sandström, “Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIˮ, International Journal of Fatigue, Vol. 25, pp. 1379-1387, 2003.
[7] M. Ellis, & M. Strangwood, “Welding of rapidly solidified Alloy 8009 (Al–8 5Fe–1 7Si–1 3V): preliminary studyˮ, Materials science and technology, Vol. 12, pp. 970-977, 1996.
[8] S. H. Park, J. S. Kim, M. S. Han & S. J. Kim, “Corrosion and optimum corrosion protection potential of friction stir welded 5083-O Al alloy for leisure shipˮ, Transactions of Nonferrous Metals Society of China, Vol. 19, pp. 898-903, 2009.
[9] J. Lumsden, M. Mahoney, G. Pollock & C. Rhodes, “Intergranular corrosion following friction stir welding of aluminum alloy 7075-T651. Corrosionˮ, Corrosion, Vol. 55, pp. 1127-1135, 1999.
[10] G. Biallas, R. Braun, C. Donne & W. Kaysser, “Mechanical properties and corrosion behavior of friction stir welded 2024-T3ˮ, in 1st International Symposium on Friction Stir Welding, Thousand Oaks, CA, pp. 14-16, 1999.
[11] F. Hannour, A. Davenport & M. Strangwood, “The 2nd International Symposium on Friction Stir Weldingˮ, Gothenburg, Sweden, 2000.
[12] J. Lumsden, M. Mahoney, & G. Pollock, “Corrosion behavior of friction stir welded high strength aluminum alloysˮ, DTIC Document, 2002.
[13] G. Elatharasan & V. S. S. Kumar, “Corrosion Analysis of Friction Stir-welded AA 7075 Aluminium Alloyˮ, Strojniški vestnik-Journal of Mechanical Engineering, Vol. 60, pp. 29-34, 2014.
[14] K. T. Babu, P. K. Kumar & S. Muthukumaran, “Mechanical, Metallurgical Characteristics and Corrosion Properties of Friction Stir Welded AA6061-T6 Using Commercial Pure Aluminium as a Filler Plateˮ, Procedia Materials Science, Vol. 6, pp. 648-655, 2014.
[15] E. T. Akinlabi, A. Andrews & S. A. Akinlabi, “Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminium and copperˮ, Transactions of Nonferrous Metals Society of China, Vol. 24, pp. 1323-1330, 2014.
[16] C. Paglia & R. Buchheit, “A look in the corrosion of aluminum alloy friction stir weldsˮ, Scripta Materialia, Vol. 58, pp. 383-387, 2008.
[17] C. Rhodes, M. Moheney, W. Bingel & R. Spurling, “Effects of friction stir welding on microstructure of 7075 aluminumˮ, Scripta materialia, Vol. 36, pp. 69-75, 1997.
[18] M. Jariyaboon, A. Davenport, R. Ambat, B. Connolly & D. Price, “The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024–T351ˮ, Corrosion Science, Vol. 49, No. 2. pp. 877-909, 2007.
[19] F. Hannour, A. Davenport & M. Strangwood, “Corrosion of friction stir welds in high strength aluminium alloysˮ, in 2nd International Symposium on Friction Stir Welding, pp. 26-28, 2000.
[20] W. Hu & E. I. Meletis, “Corrosion and environment-assisted cracking behavior of friction stir welded Al 2195 and Al 2219 alloysˮ, Materials science forum, Vol. 331, pp. 1683-1688, 2000.
[21] G. Frankel & Z. Xia, “Localized corrosion and stress corrosion cracking resistance of friction stir welded aluminum alloy 5454ˮ, Corrosion, Vol. 55, pp. 139-150, 1999.
[22] A. Squillace, A. De Fenzo, G. Giorleo & F. Bellucci, “A comparison between FSW and TIG welding techniques: modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt jointsˮ, Journal of Materials Processing Technology, Vol. 152, pp. 97-105, 2004.
[23] A. S. f. Testing, & Material, “ASTM designation E 8-00 Standard Test Methods for Tension Testing of Metallic Materialsˮ, ASTM, 2000.
[24] H. J. Liu, & Z. Li, “Microstructural zones and tensile characteristics of friction stir welded joint of TC4 titanium alloyˮ, Transactions of Nonferrous Metals Society of China, Vol. 20, pp. 1873-1878, 2010.
[25] M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, & B. Cheeseman, “Computational analysis and experimental validation of the friction-stir welding behaviour of Ti—6Al—4Vˮ, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 225, pp. 208-223, 2011.
[26] Y. Zhang, Y. Sato, H. Kokawa & S. Park, “Stir zone microstructure of commercial purity titanium friction stir welded using pcBN toolˮ, Materials Science and Engineering, Vol. 448, pp. 25-30, 2008.
[27] H. Liu, L. Zhou, & Q. Liu, “Microstructural characteristics and mechanical properties of friction stir welded joints of Ti–6Al–4V titanium alloyˮ, Materials & Design, Vol. 31, pp. 1650-1655, 2010.
[28] V. Soundararajan, S. Zekovic & R. Kovacevic, “Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061ˮ, International Journal of Machine Tools and Manufacture, Vol. 45, pp. 1577-1587, 2005.
[29] Y. h CHEN, N. Quan & L. m. KE, “Interface characteristic of friction stir welding lap joints of Ti/Al dissimilar alloysˮ, Transactions of Nonferrous Metals Society of China, Vol. 22, pp. 299-304, 2012.
[30] E. P. O. PROCESOV, “Experimental Comparison Of Resistance Spot Welding And Friction-Stir Spot Welding Processes For The En Aw 5005 Aluminum Alloyˮ, Materiali in tehnologije, Vol.. 45, pp. 395-399, 2011.
[31] A. Fuji, K. Ikeuchi, Y. Sato & H. Kokawa, “Interlayer growth at interfaces of Ti/Al–1% Mn, Ti/Al–4· 6% Mg and Ti/pure Al friction weld joints by post-weld heat treatmentˮ, Science and Technology of Welding & Joining, Vol. 9, pp. 507-512, 2004.
[32] A. Fuji, K. Ameyama & T. North, “Influence of silicon in aluminium on the mechanical properties of titanium/aluminium friction jointsˮ, Journal of materials science, Vol. 30, pp. 5185-5191, 1995.
[33] A. Fuji, “In situ observation of interlayer growth during heat treatment of friction weld joint between pure titanium and pure aluminiumˮ, Science and Technology of Welding & Joining, Vol. 7, pp. 413-416, 2002.
[34] R. Nandan, T. DebRoy & H. Bhadeshia, “Recent advances in friction-stir welding–process, weldment structure and propertiesˮ, Progress in Materials Science, Vol. 53, pp. 980-1023, 2008.
[35] U. Dressler, G. Biallas & U. A. Mercado, “Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3ˮ, Materials Science and Engineering, Vol. 536, pp. 113-117, 2009.
[36] H. Fujii, Y. Sun, H. Kato & K. Nakata, “Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure Ti jointsˮ, Materials Science and Engineering, Vol. 527A, pp. 3386-3391, 2010.
[37] K. Kitamura, H. Fujii, Y. Iwata, Y. sun & Y. Morisata, “Flexible control of the microstructure and mechanical properties of friction stir welded Ti–6Al–4V jointsˮ, Materials & Design, Vol. 46, pp. 348-354, 2013.
[38] A. Farias, G. Batalha, E. Prados, R. Magnabosco & S. Delijaicov, “Tool wear evaluations in friction stir processing of commercial titanium Ti–6Al–4Vˮ, Wear, Vol. 302, pp. 1327-1333, 2013.
[39] H. Bisadi, M. Tour & A. Tavakoli, “The influence of process parameters on microstructure and mechanical properties of friction stir welded Al 5083 Alloy lap jointˮ, American journal of Materials science, Vol. 1, pp. 93-97, 2011.
[40] T. Venugopal, K. S. Rao, & K. P. Rao, “Studies on friction stir welded AA 7075 aluminum alloyˮ, Trans. indian inst. met, Vol. 57, pp. 659-663, 2004.
[41] Z. Li, W. Arbegast, P. Hartley & E. Mletis, “Microstructure characterization and stress corrosion evaluation of friction stir welded Al 2195 and Al 2219 alloysˮ, ASM International, Trends in Welding Research(USA), pp. 568-573, 1999.
[42] K. Surekha, B. Murty & K. P. Rao, “Microstructural characterization and corrosion behavior of multipass friction stir processed AA2219 aluminium alloyˮ, Surface and Coatings Technology, Vol. 202, pp. 4057-4068, 2008.
[43] R. G. Kelly, B. Murtey & K. Rao, “Electrochemical techniques in corrosion science and engineeringˮ, 2002: CRC Press.
[44] R. Bosch, J. Hubrecht, W. Bogaerts & B. Syrett, “Electrochemical frequency modulation: a new electrochemical technique for online corrosion monitoringˮ, Corrosion, Vol. 57, pp. 60-70, 2001.
[45] M. E. Orazem & B. Tribollet, “Electrochemical impedance spectroscopyˮ, Vol. 48. 2001.
[46] Y. Yang & L. Zhou, “Improving Corrosion Resistance of Friction Stir Welding Joint of 7075 Aluminum Alloy by Micro-arc Oxidationˮ, Journal of Materials Science & Technology, Vol. 30, pp. 1251-1254, 2014.
[47] C. Shen, J. Zhang & J. Ge, “Microstructures and electrochemical behaviors of the friction stir welding dissimilar weldˮ, Journal of Environmental Sciences, Vol. 23, pp. 532-535, 2011.
[48] M. B. Hariri, S. Shiri, Y. Yaghoubinezhad & M. M. Rahvard, “The optimum combination of tool rotation rate and traveling speed for obtaining the preferable corrosion behavior and mechanical properties of friction stir welded AA5052 aluminum alloyˮ, Materials & Design, Vol. 50, pp. 620-634, 2013.
_||_