برسی مکانیزم و اثر زمان لحیمکاری بر ریز ساختار و استحکام اتصال زوج Ti6Al4V/Al2O3
محورهای موضوعی : بیوموادمحمد حسین مومن پور 1 , محمود فاضل نجف آبادی 2
1 - دانشجو
2 - استادیار دانشگاه پیام نور
کلید واژه: ترکیبات بین فلزی, لحیمکاری سخت, اتصال فلز/سرامیک, اتصال Ti6Al4V/Al2O3, آلیاژ لحیم Ag-Cu,
چکیده مقاله :
در این پژوهش، اثر زمان لحیمکاری بر ریز ساختار و استحکام اتصال حاصل از لحیمکاری سخت زوج Al2O3/Ti6Al4V، با استفاده از آلیاژ لحیم Ag-Cu در محیط هوا مورد ارزیابی قرار گرفت. برسیهای ریزساختاری انجام شده توسط میکروسکوپ الکترونی روبشی (SEM) وجود چند فاز متفاوت را در فصل مشترک نشان داد. آنالیز نقطهای(EDS)، بر روی این فازها حضور عناصر تیتانیم، مس، نقره، آلومینیم، وانادیوم و اکسیژن را در فازهای شناسایی شده تایید کرد. آزمون پراش اشعه ایکس و اطلاعات مستخرج از نمودارهای پایداری فازی، حضور ترکیبات بینفلزی Ti-Cu را در نزدیکی آلیاژ Ti6Al4V و لایهی واکنشی Cu2O + CuAlO2 را در ناحیه اتصال و نزدیک به سرامیک Al2O3 تایید کرد. همچنین ارزیابی ریزساختار اتصالات حاصل مشخص نمود، در نمونهی لحیمکاری شده به مدت 10 دقیقه، لایههای واکنشی به همراه ترکیبات بین فلزی مورد بحث به مقدار ناچیزی تشکیل شده است، اما ابعاد آنها با افزایش زمان لحیمکاری به طور چشمگیری افزایش یافته است. این تغییرات ابعادی تا جایی پیش رفته است که در فصل مشترک نمونهی لحیمکاری شده به مدت 25 دقیقه منجر به ایجاد ترک شد. بیشترین استحکام برشی معادل MPa 295 برای نمونهی لحیمکاری شده به مدت 15 دقیقه به دست آمد.
In this study, using Ag-Cu brazing metal alloy, effects of brazing time on microstructure and strength of Al2O3 / Ti6Al4V joints were investigated. Therefore, ceramic/metal couple brazed by electrical furnace. Then, brazed specimens were examined by scanning electron microscope and x-ray diffraction tests. Several phases observed at the interface area and EDS analysis were recognized titanium, copper, silver, aluminum, vanadium and oxygen in this phases. With more study using x-ray diffraction patterns and phases diagrams some intermetallic compounds identified. This compounds were Ti-Cu intermetallices near to Ti6Al4V side and reactive layer of Cu2O +CuAlO2 near to Al2O3 ceramic side. Also, microstructural surveys revealed the narrow reaction layer and a little intermetallic compounds in specimen brazed for 10 minutes. With increasing brazing time, reaction layers grossed rapidly. This chemical variation made dimensional changes at metal/ceramic interface. Therefore, some crakes observed in specimen brazed for 25 minutes. Maximum of shear strength equal 295 Mpa measured in specimen brazed for 15 minutes.
[1] J. B. Park & J. D. Bronzino, “biomaterials principles and applicationsˮ, 2003.
[2] H. Yanagida, K. Koumoto & M. Miyayama, “The chemistry of ceramicsˮ, 1996.
[3] K. M. Hafez, M. H. El-Sayed & M. Naka, “Joining of alumina ceramics to metalsˮ, Science and Technology of Welding and Joining, Vol. 10, pp. 125-130, 2005.
[4] م. خدائی، م. مرآتیان، ا. صوابی و م. ح. فتحی، "اثر دمای تفجوشی بر ویژگیهای کاشتنی تیتانیومی متخلخل تولید شده به روش فضانگه دارنده جهت استفاده در بازسازی بافت سخت"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، دوره 9، شماره 3، صفحه 1-9، پاییز1394.
[5] م. ح. فتحی و و. مرتضوی ،"بیومواد فلزی"،دانشگاه علوم پزشکی اصفهان، چاپ اول، 1382.
[6] M. Yang, T. Lin, P. He & Y. Huang, “Brazing of Al2O3 to Ti–6Al–4V alloy with in situ synthesized TiB-whisker- reinforced active brazing alloyˮ, Ceramics International, Vol. 37, pp. 3029-3035, 2011.
[7] M. Yang, T. Lin & P. He, “Cu + TiB2 composite filler for brazing Al2O3 and Ti–6Al–4V alloyˮ, Journal of Alloys and Compounds, Vol. 512, pp. 282-289, 2012.
[8] M. Yang, P. He & T. Lin, “Effect of brazing conditions on microstructure and mechanical properties of Al2O3/Ti6Al4V alloy joints reinforced by TiB whiskersˮ, J. Mater. Sci. Technol, Vol. 29, pp. 961-970, 2012.
[9] G. Kumar & K. N. Prabhu, “Review of non-reactive and reactive wetting of liquids on surfacesˮ, Advances in Colloid and Interface Science, Vol. 133, pp. 61-89, 2007.
[10] خ. فرمنش،"برسی تغییرات ریزساختاری آلیاژ Ti-6Al-4V کارگرم شده بعد از انجام فرایند آنیلینگ"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، دوره1، شماره 1، صفحه 47-51، تابستان 1386.
[11] C. R. Brooks, “Heat treatment, structure and properties of non ferrous alloyˮ, American Society for Metals, 1982.
[12] J. Cao, Z. J. Zheng, L. Z. Wu, J. L. Qi, Z. P. Wang & J. C. Feng, “Processing, microstructure and mechanical properties of vacuum-brazed Al2O3/Ti6Al4V jointsˮ, Materials Science and Engineering, Vol. 535A, pp. 62-67, 2012.
[13] J. Y. Kim, M. Engelhard, J. P. Choi & K. S. Weil, “Effects of atmospheres on bonding characteristicsof silver and aluminaˮ, International Journal of Hydrogen Energy, Vol. 33, pp. 4001-4011, 2008.
[14] H. Ghasemi, A. H. Kokabi, M. A. Faghihi Sani, & Z. RiaziM, “alumina – copper eutectic bond strength: contribution of preoxidation, cuprous oxides particles, and poresˮ, Materials Science Forum, Vol. 32, 2008.
[15] C. W. Seager, K. Kokini, K. Trumble & M. J. M. Krane, “The influence of CuAlO2 on the strength of eutectically bonded Cu /Al2O3 interfacesˮ, Scripta Materialia, Vol. 46, pp. 395-400, 2002.
[16] A. M. Meier, P. R. Chidambaram, G.R. Edwards, “A comparison of the wettability of copper- copper oxide and silver-copper oxide on polycrystalline aluminaˮ, Journal of Material Science, Vol. 30, pp. 4781-4786, 1995.
[17] G. Kostorz, “Phase transformations in materialsˮ, Wiley-Vch, 2001.
[18] P. Shewmon, “Diffusion in solidsˮ, second edition, 1991.
[19] خ. ا. صدر نژاد، "فرایندهای سینتیکی در مهندسی مواد و متالورژی"، امیرکبیر، چاپ چهارم، 1392.
[20] G. Neumann & C. Tuijn, “self-diffusion and Impurity diffusion in pure metalsˮ, Elsevier, first edition, 2009.
[21] Y. Austin Chang, D. Gildberg & J. P. Neumann, “Phase diagram and thermodynamic properties of ternary copper silver systemˮ, Vol. 6, pp. 621-673, 1977.
_||_