بررسی تاثیر افزودن هافنیوم بر اکسیداسیون هم دما و مقاومت الکتریکی سوپر آلیاژ پایه نیکل جهت ساخت اتصال دهنده فلزی پیل سوختی اکسیدجامد
محورهای موضوعی : خوردگی و حفاظت مواددانیال عظیمی یانچشمه 1 , محمد اسماعیلیان 2 , کورش شیروانی 3
1 - مهندسی مواد- پژوهشکده مواد پیشرفته و انرژی های نو - سازمان پژوهشهای علمی و صنعتی ایران- تهران - ایران
2 - استادیار، سازمان پژوهش های علمی و صنعتی ایران ، پزوهشکده مواد پیشرفته و انرژی های نو تهران، ایران
3 - دانشیار، پزوهشکده مواد پیشرفته و انرژی های نو، سازمان پژوهش های علمی و صنعتی ایران ، تهران، ایران
کلید واژه: مقاومت الکتریکی, پیل سوختی, اکسیداسیون, سوپر آلیاژ پایه نیکل, هافنیوم,
چکیده مقاله :
در این تحقیق تاثیر هافنیوم بر اکسیداسیون و هدایت الکتریکی سوپر آلیاژ پایه نیکل درC o1000 و 75 ساعت بررسی شده است.اکسیداسیون با بررسی ریز ساختار با میکروسکوپ الکترونی روبشی و اندازه گیری وزن و خواص الکتریکی با اندازه گیری مقاومت ویژه سطحی تحلیل شد. نتایج نشان می دهد نمونه با 0.4 Wt.% هافنیوم کمترین افزایش وزن را دارد. خاصیت عناصر فعال همانند هافنیوم در افزایش چسبندگی و تشکیل لایه آلومینا پیوسته و بدون تخلخل، سبب کم شدن آلومینیوم مورد نیاز جهت تشکیل لایه پیوسته می شود. بررسی میکروسکوپی نشان می دهد با وجود هافنیوم تمایل به لایه Al2O3 با ضخامت کمتر بیشتر شده، به طوری که در0.4 Wt.% تنها لایه پیوسته و با ضخامت کم ایجاد شده است، ولی در مقادیر کمتر هافنیوم علاوه بر تشکیل Al2O3 داخلی و غیر پیوسته، لایه اکسیدی اسپینل با ضخامت بالاتر شکل گرفته است. بدون هافنیوم نیز لایه Cr2O3 متخلخل خارجی و لایه اکسیدی داخلی آلومینا ضخیم تشکیل شده است. بهبود مقاومت اکسیداسیون به دلیل انتقال اکسایش داخلی به خارجی آلومینیوم و تشکیل لایه محافظ Al2O3 پیوسته درسطح می باشد. چسبندگی لایه اکسیدی تحت تاثیر قفل مکانیکی در فصل مشترک آلیاژ/ لایه ناشی از تشکیل میخ در طی اکسایش است. دلیل بالاتر بودن مقاومت الکتریکی نمونه حاوی مقادیر کمتر و بدون هافنیوم، نفوذ اکسیژن و تشکیل لایه اکسیدی ضخیم آلومینا، کرومیاو اسپینل می باشد. با توجه به ضخامت کمتر و پیوسته آلومینا به عنوان تنها لایه اکسیدی تشکیل شده در حضور 0.4 Wt.% مقاومت الکتریکی نسبت به سایر نمونه ها کمتر می باشد.
Ni-Cr-Al-Hf alloys containing 0, 0.1, 0.2 and 0.4 wt.% Hf were produced and their isothermal oxidation behavior and electrical resistance has been investigated in air for 75 h at the temperature of 1000 °C. Microstructures of the oxidized samples were examined using scanning electron microscopy (SEM) and electrical resistance was measured. The samples showed different microstructures, and oxidation behavior depending on their chemical composition. The results indicated that the sample containing 0.4 wt.% Hf had the lowest weight gain, while the weight gain of the sample without Hf was the highest. An external scale of spinel overlying a region of internal oxides precipitates formed on Ni-12Cr-4.5Al. Conversely, an external Al2O3 formed on the samples containing Hf additions. In absence of Hf, Cr2O3 was the major scale that formed on surface. The improvement in the oxidation resistance is believed to be due to the transition between the internal and external oxidation of aluminum, adherent and protective Al2O3 oxide layer on the surface of the Ni-12Cr-4.5Al-0.4Hf alloy. It was found that the scale adhesion can be affected by mechanical keying at the alloy/scale interface resulting from the pegs’ formation during oxidation. Higher electrical resistance of Alloy without Hf is due to higher thickness of oxide scale formation on surface and sample with 0.4 wt.% Hf showed lowest electrical resistance due to thinner scale of Al2O3.
[1] S. P. S. Badwal & K. Foger, “Solid Oxide Electrolyte Fuel Cell Reviewˮ, Ceramics International, Vol. 22, pp. 257-265, 1996.
[2] J. W. Fergus, R. Hui, X. Li, D. P. Wilkinson & J. Zhang, “SOLID OXIDE FUEL CELLS Materials Properties and Performanceˮ, Taylor & Francis Group, pp. 179-213.
[3] C. N. Tharamani & S. M. Mayanna, “Studies on the development and characterization of Ni-Cr alloys for fuel cell applicationsˮ, Electrochemical and Solid-State Letters, Vol. 9, pp. A412-414, 2006.
[4] ع. مرتضایی و م. شمعانیان،"اثر عملیات حرارتی پیرسازی بر ریسساختار، خواص مکانیکی و مقاومت به خوردگی سوپرآلیاش پایه نیکل اینکونل ٨١٧"، فرآیند های نوین در مهندسی مواد، سال نهم، شماره چهارم، صفحه 205-213، 1394.
[5] س. س. خلیفه سلطانی، ر. ابراهیمی کهریزسنگی و ف. نعیمی،"بررسی رفتار سینتیکی اکسیداسیون ایزوترم دمای بالای پوشش هایMCrAlY اعمال شده به روش "HVOF، فرآیند های نوین در مهندسی مواد، سال دهم، شماره سوم، صفحه 67-80، 1395.
[6] S. H. Cho, S. B. Park, J. H. Lee, J. M. Hur & H. S. Lee, “Corrosion behavior of Ni-based structural materials for electrolytic reduction in lithium molten saltˮ, Journal of Nuclear Materials, Vol. 412, pp. 157-164, 2011.
[7] S. J. Park, S. M. Seo, Y. S. Yoo, H. W. Jeong & H. Jang, “Effects of Al and Ta on the high temperature oxidation of Ni-based superalloysˮ, Corrosion Science, Vol. 90, pp. 305-312, 2015.
[8] V. P. Deodeshmukh, S. J. Matthews & D. L. klarstorm, “High temperature oxidation performance of a new alumina-forming Ni-Fe-Cr-Al alloy in flowing airˮ, International Journal of Hydrogen Energy, Vol. 36, pp. 4580-4587, 2011.
[9] A. Safikhani, M. Esmailian, T. Tinatiseresht & G. Barati Darband, “High temperature cyclic oxidation behavior of ferritic stainless steel with addition of alloying elements Nb and Ti for usen in SOFCs interconnectˮ, International of Hydrogen Energy, Vol. 41, pp. 6045-6052, 2016.
[10] J. Y. Choi, Y. S. Kim, I. Sah, H. C. No & C. Jang “Corrosion resistance of alloys in high temperature hydrogen iodide gas environment for sulfur-iodine thermochemical cycleˮ, International Journal of Hydrogen Energy, Vol. 39, pp. 14557-14564, 2014.
[11] E. Prieto Garcia, F. J. Baldenebro Lopez, I. Estrada Guel, J. M. Herrera Ramirez & R. Martinez Sanchez, “Microstructural evolution of mechanically alloyed Ni-based alloy under high temperature oxidationˮ, Powder Technology, Vol. 281, pp. 57-64, 2015.
[12] K. Yuan, R. Eriksson, R. Lin Peng, X. H. Li, S. Johansson & Y. D. Wang, “Modeling of microstructural evolution and lifetime prediction of McrAlY coatings on nickel based superalloys during high temperature oxidationˮ, Surface and Coatings Technology, Vol. 232, pp. 204-215, 2013.
[13] B. A. Pint, “The role of chemical composition on the oxidation performance of aluminide coatingsˮ, Surface and Coatings Technology, Vol. 188-189, pp. 71-78, 2004.
[14] Y. Li, J. Wu, C. Johnson, R. Gemmen, X. Mao Scott & X. Liu, “Oxidation behavior of metallic interconnects for SOFC in coal syngasˮ, International Journal of Hydrogen Energy, Vol. 34, pp. 1489-1496, 2009.
[15] P. Viklund & R. Norling R, “Cyclic long-term testing of gas turbine burner materials in reducing environments at 700 °Cˮ, Materials and Corrosion, Vol. 65, pp. 169-177, 2014.
[16] R. Sachitanand, M. Sattari, J. E. Svensson & J. Froitzheim, “Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnectsˮ, International Journal of Hydrogen Energy, Vol. 38, pp. 15328-15334, 2013.
[17] J. C. W. Mah, A. Muchtar, M. R. Somalu & M. J. Ghazali, “Metallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniquesˮ, International Journal of Hydrogen Energy, 2016, http://doi.org/10.1016/j.ijhydene.2016.03.195.
[18] Y. Niu, X. J. Zhang, Y. Wu & F. Gesmundo, “The third-element effect in the oxidation of Ni-xCr-7Al (x= 0, 5, 10, 15 at.%) alloys in 1 atm O2 at 900-1000 °Cˮ, Corrosion Science, Vol. 48, pp. 4020-4036, 2006.
[19] C. S. Giggins & F. S. Pettit, “Oxidation of Ni-Cr-Al alloys between 1000 ° and 1200 °Cˮ, Journal of The Electrochemical Society, Vol. 118, pp. 1782-1790, 1971.
[20] F. H. Stott & G. C. Wood, “The mechanism of oxidation of Ni-Cr-Al alloys at 1000 °-1200 °Cˮ, Corrosion Science, Vol. 11, pp. 799-812, 1971.
[21] D. Wong Yun & H. Suk Seo, “Oxide modification by chi phase formed on oxide/metal interface of Fe-22Cr-0.5Mn ferritic stainless steel for SOFC interconnectˮ, International Journal of Hydrogen Energy, Vol. 36, pp. 5595 – 5603, 2011.
[22] K. Fritscher, O. Schubert, C. Leyens & U. Schulz “Short-time oxidation of cast γ/γ/-Ni-Cr-Al-Ta-Re alloys at 1000 °Cˮ, Oxidation of Metals, Vol. 78, pp. 63-82, 2012.
[23] P. D. Jablonski & D. E. Alman, “Oxidation resistance and mechanical properties of experimental low coefficient of thermal expansion (CTE) Ni-base alloysˮ, International Journal of Hydrogen Energy, Vol. 32, pp. 3705-3712, 2007.
[24] G. H. Meier, F. S. Pettit & J. L. Smialek, “The effects of reactive element additions and sulfur removal on the adherence of alumina to Ni- and Fe-base alloysˮ, Materials and Corrosion, Vol. 46, pp. 232-240, 1995.
[25] Y. Wang, J. L. Smialek & M. Suneson, “Oxidation behavior of Hf-modified aluminide coatings on inconel-718 at 1050 °Cˮ, Journal of Coating Science and Technology, Vol. 1, pp. 25-45, 2014.
[26] H. Guo, L. Sun, H. Li & S. Gong, “High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating systemˮ, Thin Solid Films, Vol. 516, pp. 5732-5735, 2008.
[27] B. A. Pint, K. L. More & I. G. Wright, “The use of two reactive elements to optimize oxidation performance of alumina forming alloysˮ, Materials at High Temperatures, Vol. 20, pp. 375-386, 2003.
[28] C. Mennicke, M. Y. He, D. R. Clarke & J. S. Smith, “The role of secondary oxide inclusions (pegs) on the spalling resistance of oxide filmsˮ, Acta Materialia, Vol. 48, pp. 2941-2949, 2000.
_||_